Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Reinforcement Learning Algorithms with Python
Reinforcement Learning Algorithms with Python

Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

eBook
€15.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
Table of content icon View table of contents Preview book icon Preview Book

Reinforcement Learning Algorithms with Python

The Landscape of Reinforcement Learning

Humans and animals learn through a process of trial and error. This process is based on our reward mechanisms that provide a response to our behaviors. The goal of this process is to, through multiple repetitions, incentivize the repetition of actions which trigger positive responses, and disincentivize the repetition of actions which trigger negative ones. Through the trial and error mechanism, we learn to interact with the people and world around us, and pursue complex, meaningful goals, rather than immediate gratification.

Learning through interaction and experience is essential. Imagine having to learn to play football by only looking at other people playing it. If you took to the field to play a football match based on this learning experience, you would probably perform incredibly poorly.

This was demonstrated throughout the mid-20th...

An introduction to RL

RL is an area of machine learning that deals with sequential decision-making, aimed at reaching a desired goal. An RL problem is constituted by a decision-maker called an Agent and the physical or virtual world in which the agent interacts, is known as the Environment. The agent interacts with the environment in the form of Action which results in an effect. As a result, the environment will feedback to the agent a new State and Reward. These two signals are the consequences of the action taken by the agent. In particular, the reward is a value indicating how good or bad the action was, and the state is the current representation of the agent and the environment. This cycle is shown in the following diagram:

In this diagram the agent is represented by PacMan that based on the current state of the environment, choose which action to take. Its behavior will...

Elements of RL

As we know, an agent interacts with their environment by the means of actions. This will cause the environment to change and to feedback to the agent a reward that is proportional to the quality of the actions and the new state of the agent. Through trial and error, the agent incrementally learns the best action to take in every situation so that, in the long run, it will achieve a bigger cumulative reward. In the RL framework, the choice of the action in a particular state is done by a policy, and the cumulative reward that is achievable from that state is called the value function. In brief, if an agent wants to behave optimally, then in every situation, the policy has to select the action that will bring it to the next state with the highest value. Now, let's take a deeper look at these fundamental concepts.

...

Applications of RL

RL has been applied to a wide variety of fields, including robotics, finance, healthcare, and intelligent transportation systems. In general, they can be grouped into three major areas—automatic machines (such as autonomous vehicles, smart grids, and robotics), optimization processes (for example, planned maintenance, supply chains, and process planning) and control (for example, fault detection and quality control).

In the beginning, RL was only ever applied to simple problems, but deep RL opened the road to different problems, making it possible to deal with more complex tasks. Nowadays, deep RL has been showing some very promising results. Unfortunately, many of these breakthroughs are limited to research applications or games, and, in many situations, it is not easy to bridge the gap between purely research-oriented applications and industry problems...

Summary

RL is a goal-oriented approach to decision-making. It differs from other paradigms due to its direct interaction with the environment and for its delayed reward mechanism. The combination of RL and deep learning is very useful in problems with high-dimensional state spaces and in problems with perceptual inputs. The concepts of policy and value functions are key as they give an indication about the action to take and the quality of the states of the environment. In RL, the model of the environment is not required, but it can give additional information and, therefore, improve the quality of the policy.

Now that all the key concepts have been introduced, in the following chapters, the focus will be on actual RL algorithms. But first, in the next chapter, you will be given the grounding to develop RL algorithms using OpenAI and TensorFlow.

...

Questions

  • What is RL?
  • What is the end goal of an agent?
  • What are the main differences between supervised learning and RL?
  • What are the benefits of combining deep learning and RL?
  • Where does the term "reinforcement" come from?
  • What is the difference between policy and value functions?
  • Can the model of an environment be learned through interacting with it?

Further reading

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks
  • Understand and develop model-free and model-based algorithms for building self-learning agents
  • Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies

Description

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.

Who is this book for?

If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You’ll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.

What you will learn

  • Develop an agent to play CartPole using the OpenAI Gym interface
  • Discover the model-based reinforcement learning paradigm
  • Solve the Frozen Lake problem with dynamic programming
  • Explore Q-learning and SARSA with a view to playing a taxi game
  • Apply Deep Q-Networks (DQNs) to Atari games using Gym
  • Study policy gradient algorithms, including Actor-Critic and REINFORCE
  • Understand and apply PPO and TRPO in continuous locomotion environments
  • Get to grips with evolution strategies for solving the lunar lander problem

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Oct 18, 2019
Length: 366 pages
Edition : 1st
Language : English
ISBN-13 : 9781789139709
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning

Product Details

Publication date : Oct 18, 2019
Length: 366 pages
Edition : 1st
Language : English
ISBN-13 : 9781789139709
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 99.97
Advanced Deep Learning with Python
€36.99
PyTorch 1.x Reinforcement Learning Cookbook
€32.99
Reinforcement Learning Algorithms with Python
€29.99
Total 99.97 Stars icon

Table of Contents

18 Chapters
Section 1: Algorithms and Environments Chevron down icon Chevron up icon
The Landscape of Reinforcement Learning Chevron down icon Chevron up icon
Implementing RL Cycle and OpenAI Gym Chevron down icon Chevron up icon
Solving Problems with Dynamic Programming Chevron down icon Chevron up icon
Section 2: Model-Free RL Algorithms Chevron down icon Chevron up icon
Q-Learning and SARSA Applications Chevron down icon Chevron up icon
Deep Q-Network Chevron down icon Chevron up icon
Learning Stochastic and PG Optimization Chevron down icon Chevron up icon
TRPO and PPO Implementation Chevron down icon Chevron up icon
DDPG and TD3 Applications Chevron down icon Chevron up icon
Section 3: Beyond Model-Free Algorithms and Improvements Chevron down icon Chevron up icon
Model-Based RL Chevron down icon Chevron up icon
Imitation Learning with the DAgger Algorithm Chevron down icon Chevron up icon
Understanding Black-Box Optimization Algorithms Chevron down icon Chevron up icon
Developing the ESBAS Algorithm Chevron down icon Chevron up icon
Practical Implementation for Resolving RL Challenges Chevron down icon Chevron up icon
Assessments Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
(3 Ratings)
5 star 33.3%
4 star 0%
3 star 33.3%
2 star 0%
1 star 33.3%
designer Mar 16, 2023
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Non of the code samples in the book and code samples in GitHub work because they are outdated. The code showed 4 years ago and the author hasn’t updated them. When I copied the samples, they all kept saying outdated and a bunch of other errors due to solfware incompatible. Wasted time and money
Amazon Verified review Amazon
schwarzwald Apr 12, 2020
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
Good content but doesn't mention that Tensorflow 1 is required. The book uses code that will not work in the current TF version. For people not intimately familiar with TF 1 vs. 2, this will be confusing.
Amazon Verified review Amazon
Sebastien Feb 16, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Easy to understand and in each chapter there is an example, with code, that help you understand how to actually use the algorithm
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.