Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Parallel Programming Cookbook

You're reading from   Python Parallel Programming Cookbook Master efficient parallel programming to build powerful applications using Python

Arrow left icon
Product type Paperback
Published in Aug 2015
Publisher
ISBN-13 9781785289583
Length 286 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giancarlo Zaccone Giancarlo Zaccone
Author Profile Icon Giancarlo Zaccone
Giancarlo Zaccone
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface 1. Getting Started with Parallel Computing and Python FREE CHAPTER 2. Thread-based Parallelism 3. Process-based Parallelism 4. Asynchronous Programming 5. Distributed Python 6. GPU Programming with Python Index

The parallel computing memory architecture

Based on the number of instructions and data that can be processed simultaneously, computer systems are classified into four categories:

  • Single instruction, single data (SISD)
  • Single instruction, multiple data (SIMD)
  • Multiple instruction, single data (MISD)
  • Multiple instruction, multiple data (MIMD)

This classification is known as Flynn's taxonomy.

The parallel computing memory architecture

SISD

The SISD computing system is a uniprocessor machine. It executes a single instruction that operates on a single data stream. In SISD, machine instructions are processed sequentially.

In a clock cycle, the CPU executes the following operations:

  • Fetch: The CPU fetches the data and instructions from a memory area, which is called a register.
  • Decode: The CPU decodes the instructions.
  • Execute: The instruction is carried out on the data. The result of the operation is stored in another register.

Once the execution stage is complete, the CPU sets itself to begin another CPU cycle.

SISD

The SISD architecture schema

The algorithms that run on these types of computers are sequential (or serial), since they do not contain any parallelism. Examples of SISD computers are hardware systems with a single CPU.

The main elements of these architectures (Von Neumann architectures) are:

  • Central memory unit: This is used to store both instructions and program data
  • CPU: This is used to get the instruction and/or data from the memory unit, which decodes the instructions and sequentially implements them
  • The I/O system: This refers to the input data and output data of the program

The conventional single processor computers are classified as SISD systems. The following figure specifically shows which areas of a CPU are used in the stages of fetch, decode, and execute:

SISD

CPU's components in the fetch-decode-execute phase

MISD

In this model, n processors, each with their own control unit, share a single memory unit. In each clock cycle, the data received from the memory is processed by all processors simultaneously, each in accordance with the instructions received from its control unit. In this case, the parallelism (instruction-level parallelism) is obtained by performing several operations on the same piece of data. The types of problems that can be solved efficiently in these architectures are rather special, such as those regarding data encryption; for this reason, the computer MISD did not find space in the commercial sector. MISD computers are more of an intellectual exercise than a practical configuration.

MISD

The MISD architecture scheme

SIMD

A SIMD computer consists of n identical processors, each with its own local memory, where it is possible to store data. All processors work under the control of a single instruction stream; in addition to this, there are n data streams, one for each processor. The processors work simultaneously on each step and execute the same instruction, but on different data elements. This is an example of data-level parallelism. The SIMD architectures are much more versatile than MISD architectures. Numerous problems covering a wide range of applications can be solved by parallel algorithms on SIMD computers. Another interesting feature is that the algorithms for these computers are relatively easy to design, analyze, and implement. The limit is that only the problems that can be divided into a number of subproblems (which are all identical, each of which will then be solved contemporaneously, through the same set of instructions) can be addressed with the SIMD computer. With the supercomputer developed according to this paradigm, we must mention the Connection Machine (1985 Thinking Machine) and MPP (NASA - 1983). As we will see in Chapter 6, GPU Programming with Python, the advent of modern graphics processor unit (GPU), built with many SIMD embedded units has lead to a more widespread use of this computational paradigm.

MIMD

This class of parallel computers is the most general and more powerful class according to Flynn's classification. There are n processors, n instruction streams, and n data streams in this. Each processor has its own control unit and local memory, which makes MIMD architectures more computationally powerful than those used in SIMD. Each processor operates under the control of a flow of instructions issued by its own control unit; therefore, the processors can potentially run different programs on different data, solving subproblems that are different and can be a part of a single larger problem. In MIMD, architecture is achieved with the help of the parallelism level with threads and/or processes. This also means that the processors usually operate asynchronously. The computers in this class are used to solve those problems that do not have a regular structure that is required by the model SIMD. Nowadays, this architecture is applied to many PCs, supercomputers, and computer networks. However, there is a counter that you need to consider: asynchronous algorithms are difficult to design, analyze, and implement.

MIMD

The MIMD architecture scheme

You have been reading a chapter from
Python Parallel Programming Cookbook
Published in: Aug 2015
Publisher:
ISBN-13: 9781785289583
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image