Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Machine Learning

You're reading from   Python Machine Learning Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781789955750
Length 772 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Vahid Mirjalili Vahid Mirjalili
Author Profile Icon Vahid Mirjalili
Vahid Mirjalili
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data 2. Training Simple Machine Learning Algorithms for Classification FREE CHAPTER 3. A Tour of Machine Learning Classifiers Using scikit-learn 4. Building Good Training Datasets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Implementing a Multilayer Artificial Neural Network from Scratch 13. Parallelizing Neural Network Training with TensorFlow 14. Going Deeper – The Mechanics of TensorFlow 15. Classifying Images with Deep Convolutional Neural Networks 16. Modeling Sequential Data Using Recurrent Neural Networks 17. Generative Adversarial Networks for Synthesizing New Data 18. Reinforcement Learning for Decision Making in Complex Environments 19. Other Books You May Enjoy 20. Index

About the convergence in neural networks

You might be wondering why we did not use regular gradient descent but instead used mini-batch learning to train our NN for the handwritten digit classification. You may recall our discussion on SGD that we used to implement online learning. In online learning, we compute the gradient based on a single training example (k = 1) at a time to perform the weight update. Although this is a stochastic approach, it often leads to very accurate solutions with a much faster convergence than regular gradient descent. Mini-batch learning is a special form of SGD where we compute the gradient based on a subset k of the n training examples with 1 < k < n. Mini-batch learning has the advantage over online learning that we can make use of our vectorized implementations to improve computational efficiency. However, we can update the weights much faster than in regular gradient descent. Intuitively, you can think of mini-batch learning as predicting the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime