Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python High Performance, Second Edition

You're reading from   Python High Performance, Second Edition Build high-performing, concurrent, and distributed applications

Arrow left icon
Product type Paperback
Published in May 2017
Publisher Packt
ISBN-13 9781787282896
Length 270 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Gabriele Lanaro Dr. Gabriele Lanaro
Author Profile Icon Dr. Gabriele Lanaro
Dr. Gabriele Lanaro
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface Benchmarking and Profiling FREE CHAPTER Pure Python Optimizations Fast Array Operations with NumPy and Pandas C Performance with Cython Exploring Compilers Implementing Concurrency Parallel Processing Distributed Processing Designing for High Performance

Summary

In this chapter, we learned how to manipulate NumPy arrays and how to write fast mathematical expressions using array broadcasting. This knowledge will help you write more concise, expressive code and, at the same time, to obtain substantial performance gains. We also introduced the numexpr library to further speed up NumPy calculations with minimal effort.

Pandas implements efficient data structures that are useful when analyzing large datasets. In particular, Pandas shines when the data is indexed by non-integer keys and provides very fast hashing algorithms.

NumPy and Pandas work well when handling large, homogenous inputs, but they are not suitable when the expressions grow complex and the operations cannot be expressed using the tools provided by these libraries. In such cases, we can leverage Python capabilities as a glue language by interfacing it with C using the Cython package.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime