Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance

You're reading from   Python for Finance Apply powerful finance models and quantitative analysis with Python

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher
ISBN-13 9781787125698
Length 586 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Yuxing Yan Yuxing Yan
Author Profile Icon Yuxing Yan
Yuxing Yan
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Python Basics FREE CHAPTER 2. Introduction to Python Modules 3. Time Value of Money 4. Sources of Data 5. Bond and Stock Valuation 6. Capital Asset Pricing Model 7. Multifactor Models and Performance Measures 8. Time-Series Analysis 9. Portfolio Theory 10. Options and Futures 11. Value at Risk 12. Monte Carlo Simulation 13. Credit Risk Analysis 14. Exotic Options 15. Volatility, Implied Volatility, ARCH, and GARCH Index

Tests of normality

In finance, knowledge about normal distribution is very important for two reasons. First, stock returns are assumed to follow a normal distribution. Second, the error terms from a good econometric model should follow a normal distribution with a zero mean. However, in the real world, this might not be true for stocks. On the other hand, whether stocks or portfolios follow a normal distribution could be tested by various so-called normality tests. The Shapiro-Wilk test is one of them. For the first example, random numbers are drawn from a normal distribution. As a consequence, the test should confirm that those observations follow a normal distribution:

from scipy import stats 
import scipy as sp
sp.random.seed(12345)
mean=0.1
std=0.2
n=5000
ret=sp.random.normal(loc=0,scale=std,size=n)
print 'W-test, and P-value' 
print(stats.shapiro(ret))
W-test, and P-value
(0.9995986223220825, 0.4129064679145813)

Assume that our confidence level is 95%, that is, alpha=0.05....

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime