Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Next generation techniques to revolutionize computer vision, AI, speech and data analysis

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786464453
Length 406 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning – An Introduction FREE CHAPTER 2. Neural Networks 3. Deep Learning Fundamentals 4. Unsupervised Feature Learning 5. Image Recognition 6. Recurrent Neural Networks and Language Models 7. Deep Learning for Board Games 8. Deep Learning for Computer Games 9. Anomaly Detection 10. Building a Production-Ready Intrusion Detection System Index

Convolutional layers in Theano


Now that we have the intuition of how convolutional layers work, we are going to implement a simple example of a convolutional layer using Theano.

Let us start by importing the modules that are needed:

import numpy  
import theano  
import matplotlib.pyplot as plt 
import theano.tensor as T
from theano.tensor.nnet import conv
import skimage.data
import matplotlib.cm as cm

Theano works by first creating a symbolic representation of the operations we define. We will later have another example using Keras, that, while it provides a nice interface to make creating neural networks easier, it lacks some of the flexibility one can have by using Theano (or TensorFlow) directly.

We define the variables needed and the neural network operations, by defining the number of feature maps (the depth of the convolutional layer) and the size of the filter, then we symbolically define the input using the Theano tensor class. Theano treats the image channels as a separate dimension...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image