Sensitivity
Sensitivity plays a crucial role in the realm of differential privacy. It refers to the maximum amount by which the output of a function or computation can change when a single individual’s data point is added or removed from a dataset. Sensitivity provides a measure of the privacy risk associated with performing computations on sensitive data.
Let’s look at an example of a real-life scenario that illustrates the need to measure the impact of changing a dataset using sensitivity analysis.
Scenario – financial risk assessment model
Suppose a financial institution develops a machine learning model to assess the credit risk of loan applicants. The model takes various features, such as income, credit history, employment status, and outstanding debt, into account to predict the likelihood of loan default. The institution wants to ensure that the model is robust and not overly sensitive to the presence or absence of any individual in the dataset...