Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Computer Vision

You're reading from   Practical Computer Vision Extract insightful information from images using TensorFlow, Keras, and OpenCV

Arrow left icon
Product type Paperback
Published in Feb 2018
Publisher Packt
ISBN-13 9781788297684
Length 234 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Abhinav Dadhich Abhinav Dadhich
Author Profile Icon Abhinav Dadhich
Abhinav Dadhich
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. A Fast Introduction to Computer Vision FREE CHAPTER 2. Libraries, Development Platform, and Datasets 3. Image Filtering and Transformations in OpenCV 4. What is a Feature? 5. Convolutional Neural Networks 6. Feature-Based Object Detection 7. Segmentation and Tracking 8. 3D Computer Vision 9. Mathematics for Computer Vision 10. Machine Learning for Computer Vision 11. Other Books You May Enjoy

A rolling-ball view of learning

To learn the parameters of the model, we create a cost function or objective function and minimize its value. The minimum value of objective will give the best parameters for the model. For example, let model predicts a value and also let we are given with the dataset of both the model input and the output. Then, learning a model requires updating the parameters such that we get the best performance.

To make the model learn, we use parameter update rule. It works by estimating how far the model-estimated values are away from the target values and then updates the parameter such that this difference reduces. After several iterations, the difference gets smaller, and once it is small enough, we say our model has learnt the parameters. A figurative explanation is given here:

The learning of the model is similar to a rolling ball. It is an iterative...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime