Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Pandas 1.x Cookbook

You're reading from   Pandas 1.x Cookbook Practical recipes for scientific computing, time series analysis, and exploratory data analysis using Python

Arrow left icon
Product type Paperback
Published in Feb 2020
Publisher Packt
ISBN-13 9781839213106
Length 626 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Theodore Petrou Theodore Petrou
Author Profile Icon Theodore Petrou
Theodore Petrou
Matthew Harrison Matthew Harrison
Author Profile Icon Matthew Harrison
Matthew Harrison
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Pandas Foundations 2. Essential DataFrame Operations FREE CHAPTER 3. Creating and Persisting DataFrames 4. Beginning Data Analysis 5. Exploratory Data Analysis 6. Selecting Subsets of Data 7. Filtering Rows 8. Index Alignment 9. Grouping for Aggregation, Filtration, and Transformation 10. Restructuring Data into a Tidy Form 11. Combining Pandas Objects 12. Time Series Analysis 13. Visualization with Matplotlib, Pandas, and Seaborn 14. Debugging and Testing Pandas 15. Other Books You May Enjoy
16. Index

Who this book is for

This book contains nearly 100 recipes, ranging from very simple to advanced. All recipes strive to be written in clear, concise, and modern idiomatic pandas code. The How it works... sections contain extremely detailed descriptions of the intricacies of each step of the recipe. Often, in the There's more... section, you will get what may seem like an entirely new recipe. This book is densely packed with an extraordinary amount of pandas code.

As a generalization, the recipes in the first seven chapters tend to be simpler and more focused on the fundamental and essential operations of pandas than the later chapters, which focus on more advanced operations and are more project-driven. Due to the wide range of complexity, this book can be useful to both novice and everyday users alike. It has been my experience that even those who use pandas regularly will not master it without being exposed to idiomatic pandas code. This is somewhat fostered by the breadth that pandas offers. There are almost always multiple ways of completing the same operation, which can have users get the result they want but in a very inefficient manner. It is not uncommon to see an order of magnitude or more in performance difference between two sets of pandas solutions to the same problem.

The only real prerequisite for this book is a fundamental knowledge of Python. It is assumed that the reader is familiar with all the common built-in data containers in Python, such as lists, sets, dictionaries, and tuples.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime