Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenGL 4.0 Shading Language Cookbook

You're reading from   OpenGL 4.0 Shading Language Cookbook With over 60 recipes, this Cookbook will teach you both the elementary and finer points of the OpenGL Shading Language, and get you familiar with the specific features of GLSL 4.0. A totally practical, hands-on guide.

Arrow left icon
Product type Paperback
Published in Jul 2011
Publisher Packt
ISBN-13 9781849514767
Length 340 pages
Edition 1st Edition
Tools
Arrow right icon
Toc

Table of Contents (16) Chapters Close

OpenGL 4.0 Shading Language Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Getting Started with GLSL 4.0 FREE CHAPTER 2. The Basics of GLSL Shaders 3. Lighting, Shading Effects, and Optimizations 4. Using Textures 5. Image Processing and Screen Space Techniques 6. Using Geometry and Tessellation Shaders 7. Shadows 8. Using Noise in Shaders 9. Animation and Particles Index

Animating a surface with vertex displacement


A straightforward way to leverage shaders for animation is to simply transform the vertices within the vertex shader based on some time-dependent function. The OpenGL application supplies static geometry and the vertex shader modifies the geometry using the current time (supplied as a uniform variable). This moves the computation of the vertex position from the CPU to the GPU, and leverages whatever parallelism the graphics driver makes available.

In this example, we'll create a waving surface by transforming the vertices of a tessellated quad based on a sine wave. We'll send down the pipeline a set of triangles that make up a flat surface in the x-z plane. In the vertex shader we'll transform the vertex's y-coordinate based on a time-dependent sine function, and compute the normal vector of the transformed vertex. The following image shows the desired result. (You'll have to imagine that the waves are travelling across the surface from left to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime