Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Data Architecture on AWS

You're reading from   Modern Data Architecture on AWS A Practical Guide for Building Next-Gen Data Platforms on AWS

Arrow left icon
Product type Paperback
Published in Aug 2023
Publisher Packt
ISBN-13 9781801813396
Length 420 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Behram Irani Behram Irani
Author Profile Icon Behram Irani
Behram Irani
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Part 1: Foundational Data Lake
2. Prologue: The Data and Analytics Journey So Far FREE CHAPTER 3. Chapter 1: Modern Data Architecture on AWS 4. Chapter 2: Scalable Data Lakes 5. Part 2: Purpose-Built Services And Unified Data Access
6. Chapter 3: Batch Data Ingestion 7. Chapter 4: Streaming Data Ingestion 8. Chapter 5: Data Processing 9. Chapter 6: Interactive Analytics 10. Chapter 7: Data Warehousing 11. Chapter 8: Data Sharing 12. Chapter 9: Data Federation 13. Chapter 10: Predictive Analytics 14. Chapter 11: Generative AI 15. Chapter 12: Operational Analytics 16. Chapter 13: Business Intelligence 17. Part 3: Govern, Scale, Optimize And Operationalize
18. Chapter 14: Data Governance 19. Chapter 15: Data Mesh 20. Chapter 16: Performant and Cost-Effective Data Platform 21. Chapter 17: Automate, Operationalize, and Monetize 22. Index 23. Other Books You May Enjoy

ML using Amazon Redshift and Amazon Athena

Many times, all the data is already processed, stored, and consumed out of Amazon Redshift using SQL-based queries. Database engineers can easily create complex SQL-based consumption patterns, but they lack the understanding to stitch together all the components of ML pipelines using SageMaker. To make their day-to-day-job lives easy, they can now build ML models inside Amazon Redshift using SQL syntax. Redshift ML handles all interactions with Amazon SageMaker, transparent to the data developer.

Some of the benefits of using Redshift ML are set out here:

  • Simplicity: Makes it easy to create ML models using SQL. Even the predictions are done using SQL statements.
  • Flexibility: Allows the user to select specific ML algorithms such as XGBoost. Under the covers, the best ML model is automatically trained and tuned.
  • Performant: Even though under the covers the models are trained with SageMaker, they are eventually deployed in...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image