Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Predictive Analytics with R, Second Edition

You're reading from   Mastering Predictive Analytics with R, Second Edition Machine learning techniques for advanced models

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121393
Length 448 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
James D. Miller James D. Miller
Author Profile Icon James D. Miller
James D. Miller
Rui Miguel Forte Rui Miguel Forte
Author Profile Icon Rui Miguel Forte
Rui Miguel Forte
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Gearing Up for Predictive Modeling FREE CHAPTER 2. Tidying Data and Measuring Performance 3. Linear Regression 4. Generalized Linear Models 5. Neural Networks 6. Support Vector Machines 7. Tree-Based Methods 8. Dimensionality Reduction 9. Ensemble Methods 10. Probabilistic Graphical Models 11. Topic Modeling 12. Recommendation Systems 13. Scaling Up 14. Deep Learning Index

Summary

In this chapter, we introduced ourselves to one of the very active areas of research in machine learning, namely the field of probabilistic graphical models. These models involve using a graphical structure to encode conditional independence relations between random variables. We saw how Bayes' theorem, a very simple formula that essentially tells us how we can predicate cause by observing effect, can be used to build a simple classifier known as the Naïve Bayes classifier. This is a simple model where we are trying to predict an output class that best explains a set of observed features, all of which are assumed to be independent of each other given the output class.

We used this model to predict user sentiment on a set of movie reviews where the features were the words that were present in the reviews. Although we obtained reasonable accuracy, we found that the assumptions in our model are quite strict and prevent us from doing substantially better. Often, a Naïve...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime