We defined machine learning as the design and study of systems that learn from experience to improve their performance of a task as measured by some metric. K-means is an unsupervised learning algorithm; there are no labels or ground truth to compare with the clusters. However, we can still evaluate the performance of the algorithm using intrinsic measures. We have already discussed measuring the distortions of clusters. In this section, we will discuss another performance measure for clustering called silhouette coefficient. The silhouette coefficient is a measure of compactness and separation of clusters. It increases as the quality of clusters increases; it is large for compact clusters that are far from each other and small for large, overlapping clusters. The silhouette coefficient is calculated per instance; for a set of instances, it is calculated as...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand