Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Concurrency Programming with Java 9, Second Edition

You're reading from   Mastering Concurrency Programming with Java 9, Second Edition Fast, reactive and parallel application development

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785887949
Length 516 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Javier Fernández González Javier Fernández González
Author Profile Icon Javier Fernández González
Javier Fernández González
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. The First Step - Concurrency Design Principles FREE CHAPTER 2. Working with Basic Elements - Threads and Runnables 3. Managing Lots of Threads - Executors 4. Getting the Most from Executors 5. Getting Data from Tasks - The Callable and Future Interfaces 6. Running Tasks Divided into Phases - The Phaser Class 7. Optimizing Divide and Conquer Solutions - The Fork/Join Framework 8. Processing Massive Datasets with Parallel Streams - The Map and Reduce Model 9. Processing Massive Datasets with Parallel Streams - The Map and Collect Model 10. Asynchronous Stream Processing - Reactive Streams 11. Diving into Concurrent Data Structures and Synchronization Utilities 12. Testing and Monitoring Concurrent Applications 13. Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

Summary

In this chapter, we have presented the most basic elements to create execution threads in Java: the Runnable interface and the Thread class. We can create threads in Java in two different ways:

  • Extending the Thread class and overriding the run() method
  • Implementing the Runnable interface and passing an object of that class to the constructor of the Thread class

The second mechanism is preferred over the first one because they give us more flexibility.

We also learned how the Thread class has different methods that allow us to get information about the thread, change its priority, or wait for its finalization. We have used all these methods in two examples, one to multiply matrices and the other to search files in a directory. In both cases, concurrency gives us better performance but we also have learned that we have to be careful when implementing a concurrent version...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime