Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Clojure Data Analysis

You're reading from   Mastering Clojure Data Analysis If you'd like to apply your Clojure skills to performing data analysis, this is the book for you. The example based approach aids fast learning and covers basic to advanced topics. Get deeper into your data.

Arrow left icon
Product type Paperback
Published in May 2014
Publisher
ISBN-13 9781783284139
Length 340 pages
Edition Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Eric Richard Rochester Eric Richard Rochester
Author Profile Icon Eric Richard Rochester
Eric Richard Rochester
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Mastering Clojure Data Analysis
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
1. Network Analysis – The Six Degrees of Kevin Bacon FREE CHAPTER 2. GIS Analysis – Mapping Climate Change 3. Topic Modeling – Changing Concerns in the State of the Union Addresses 4. Classifying UFO Sightings 5. Benford's Law – Detecting Natural Progressions of Numbers 6. Sentiment Analysis – Categorizing Hotel Reviews 7. Null Hypothesis Tests – Analyzing Crime Data 8. A/B Testing – Statistical Experiments for the Web 9. Analyzing Social Data Participation 10. Modeling Stock Data Index

Exploring the data


Let's explore a little and try to get a feel for the data. First, let's try to get some summary statistics for the various datasets. Afterward, we'll generate some graphs to get a more intuitive sense for what's in the data and how they're related.

Generating summary statistics

Incanter makes generating summary statistics easy. You can pass a dataset to the incanter.stats/summary function. It returns a sequence of maps. Each map represents the summary data for each column in the original dataset. This includes whether the data is numeric or not. For nominal data, it returns some sample items and their counts. For numeric data, it returns the mean, median, minimum, and maximum.

Summarizing UNODC crime data

If we load the data and filter it for the crime of "burglary", we can get the summary statistics for those fields as follows:

(s/summary
  (i/$where {:crime {:$eq "CTS 2012 Burglary"}} by-ag-lnd))

And if we pick apart the data structures that it outputs, the following are the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime