Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning With Go

You're reading from   Machine Learning With Go Implement Regression, Classification, Clustering, Time-series Models, Neural Networks, and More using the Go Programming Language

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781785882104
Length 304 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Joseph Langstaff Whitenack Joseph Langstaff Whitenack
Author Profile Icon Joseph Langstaff Whitenack
Joseph Langstaff Whitenack
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Gathering and Organizing Data 2. Matrices, Probability, and Statistics FREE CHAPTER 3. Evaluation and Validation 4. Regression 5. Classification 6. Clustering 7. Time Series and Anomaly Detection 8. Neural Networks and Deep Learning 9. Deploying and Distributing Analyses and Models 10. Algorithms/Techniques Related to Machine Learning

Evaluation

A basic tenet of science is measurement, and the science of machine learning is not an exception. We need to be able to measure, or evaluate, how well our models are performing, so we can continue to improve on them, compare one model to another, and detect when our models are behaving poorly.

There's only one problem. How do we evaluate how our models are performing? Should we measure how fast they can be trained or make inferences? Should we measure how many times they get the right answer? How do we know what the right answer is? Should we measure how far we deviated from the observed values? How do we measure that distance?

As you can see, there are a lot of decisions to make around how we evaluate our models. What really matters is the context. In some cases, efficiency definitely matters, but every machine learning context requires us to measure how our predictions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image