Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with Core ML

You're reading from   Machine Learning with Core ML An iOS developer's guide to implementing machine learning in mobile apps

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788838290
Length 378 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Joshua Newnham Joshua Newnham
Author Profile Icon Joshua Newnham
Joshua Newnham
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Machine Learning FREE CHAPTER 2. Introduction to Apple Core ML 3. Recognizing Objects in the World 4. Emotion Detection with CNNs 5. Locating Objects in the World 6. Creating Art with Style Transfer 7. Assisted Drawing with CNNs 8. Assisted Drawing with RNNs 9. Object Segmentation Using CNNs 10. An Introduction to Create ML 11. Other Books You May Enjoy

A typical workflow 


As with any project, you enter the process with some understanding of what you are trying to build. The better you understand this (the problem), the better you are able to solve it. 

After understanding what it is that you're trying to do, your next question (in the context of building a machine learning model) is what data do I need? This includes an exploration into what data is available and what data you may need to generate yourself. 

Once you've understood what you're trying to do and what data you need, your next question/task is to decide on what algorithm (or model) is needed. This is obviously dependent on your task and the data you have; in some instances, you may be required to create your own model, but more often than not, there will be an adequate model available for you to use, or at least an architecture you can use with your own data. The following table shows some typical computer vision tasks and their related machine learning counterparts:

Task

Machine...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime