Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Machine Learning with BigQuery ML
Machine Learning with BigQuery ML

Machine Learning with BigQuery ML: Create, execute, and improve machine learning models in BigQuery using standard SQL queries

eBook
€26.98 €29.99
Paperback
€36.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Machine Learning with BigQuery ML

Chapter 1: Introduction to Google Cloud and BigQuery

The adoption of the public cloud enables companies and users to access innovative and cost-effective technologies. This is particularly valuable in the big data and Artificial Intelligence (AI) areas, where new solutions are providing possibilities that seemed impossible to achieve with on-premises systems only a few years ago. In order to be effective in the day-to-day business of a company, the new AI capabilities need to be shared between different roles and not concentrated only with technicians. Most cloud providers are currently addressing the challenge of democratizing AI across different departments and employees with different skills.

In this context, Google Cloud provides several services to accelerate the processing of large amounts of data and build Machine Learning (ML) applications that can make better decisions.

In this chapter, we'll gradually introduce the main concepts that will be useful in the upcoming hands-on activities. Using an incremental approach, we'll go through the following topics:

  • Introducing Google Cloud Platform
  • Exploring AI and ML services on GCP
  • Introducing BigQuery
  • Discovering BigQuery ML
  • Understanding BigQuery pricing
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Gain a clear understanding of AI and machine learning services on GCP, learn when to use these, and find out how to integrate them with BigQuery ML
  • Leverage SQL syntax to train, evaluate, test, and use ML models
  • Discover how BigQuery works and understand the capabilities of BigQuery ML using examples

Description

BigQuery ML enables you to easily build machine learning (ML) models with SQL without much coding. This book will help you to accelerate the development and deployment of ML models with BigQuery ML. The book starts with a quick overview of Google Cloud and BigQuery architecture. You'll then learn how to configure a Google Cloud project, understand the architectural components and capabilities of BigQuery, and find out how to build ML models with BigQuery ML. The book teaches you how to use ML using SQL on BigQuery. You'll analyze the key phases of a ML model's lifecycle and get to grips with the SQL statements used to train, evaluate, test, and use a model. As you advance, you'll build a series of use cases by applying different ML techniques such as linear regression, binary and multiclass logistic regression, k-means, ARIMA time series, deep neural networks, and XGBoost using practical use cases. Moving on, you'll cover matrix factorization and deep neural networks using BigQuery ML's capabilities. Finally, you'll explore the integration of BigQuery ML with other Google Cloud Platform components such as AI Platform Notebooks and TensorFlow along with discovering best practices and tips and tricks for hyperparameter tuning and performance enhancement. By the end of this BigQuery book, you'll be able to build and evaluate your own ML models with BigQuery ML.

Who is this book for?

This book is for data scientists, data analysts, data engineers, and anyone looking to get started with Google's BigQuery ML. You'll also find this book useful if you want to accelerate the development of ML models or if you are a business user who wants to apply ML in an easy way using SQL. Basic knowledge of BigQuery and SQL is required.

What you will learn

  • Discover how to prepare datasets to build an effective ML model
  • Forecast business KPIs by leveraging various ML models and BigQuery ML
  • Build and train a recommendation engine to suggest the best products for your customers using BigQuery ML
  • Develop, train, and share a BigQuery ML model from previous parts with AI Platform Notebooks
  • Find out how to invoke a trained TensorFlow model directly from BigQuery
  • Get to grips with BigQuery ML best practices to maximize your ML performance

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 11, 2021
Length: 344 pages
Edition : 1st
Language : English
ISBN-13 : 9781800562189
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jun 11, 2021
Length: 344 pages
Edition : 1st
Language : English
ISBN-13 : 9781800562189
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 126.97
Architecting Google Cloud Solutions
€36.99
Machine Learning with BigQuery ML
€36.99
Data Engineering with Google Cloud Platform
€52.99
Total 126.97 Stars icon

Table of Contents

19 Chapters
Section 1: Introduction and Environment Setup Chevron down icon Chevron up icon
Chapter 1: Introduction to Google Cloud and BigQuery Chevron down icon Chevron up icon
Chapter 2: Setting Up Your GCP and BigQuery Environment Chevron down icon Chevron up icon
Chapter 3: Introducing BigQuery Syntax Chevron down icon Chevron up icon
Section 2: Deep Learning Networks Chevron down icon Chevron up icon
Chapter 4: Predicting Numerical Values with Linear Regression Chevron down icon Chevron up icon
Chapter 5: Predicting Boolean Values Using Binary Logistic Regression Chevron down icon Chevron up icon
Chapter 6: Classifying Trees with Multiclass Logistic Regression Chevron down icon Chevron up icon
Section 3: Advanced Models with BigQuery ML Chevron down icon Chevron up icon
Chapter 7: Clustering Using the K-Means Algorithm Chevron down icon Chevron up icon
Chapter 8: Forecasting Using Time Series Chevron down icon Chevron up icon
Chapter 9: Suggesting the Right Product by Using Matrix Factorization Chevron down icon Chevron up icon
Chapter 10: Predicting Boolean Values Using XGBoost Chevron down icon Chevron up icon
Chapter 11: Implementing Deep Neural Networks Chevron down icon Chevron up icon
Section 4: Further Extending Your ML Capabilities with GCP Chevron down icon Chevron up icon
Chapter 12: Using BigQuery ML with AI Notebooks Chevron down icon Chevron up icon
Chapter 13: Running TensorFlow Models with BigQuery ML Chevron down icon Chevron up icon
Chapter 14: BigQuery ML Tips and Best Practices Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.9
(10 Ratings)
5 star 90%
4 star 10%
3 star 0%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Walter Lee Sep 06, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This is a very easy to read intro. level book to get you started using BQML the easy way. It shows you step by step guide to prep/clean/filter the data, train the model with many different supported algorithms/options, evaluate the model (e.g. no overfitting) and predict with the trained model. It is an excellent book if you like to use standard SQL to do Machine Learning without the need to learn Python, Tensorflow, etc… This will help liberate many business intelligence (BI) specialists upgraded into the next level, i.e. able to predict and classify for good business use cases with BQML machine learning models. A lot of easy to use code to get started. A lot of references to learn more in BQML and other use cases.Section 1 is more introduction to GCP and BQ environment. You can skip if you know them already.Section 2 is more on the linear regression, binary and multiclass logistic classifications.Section 3 is more on Adv. Models, e.g. K-means, matrix factorization, XGBoost, Deep Neural Networks.Section 4 is more on how to use GCP AI notebooks to run BQML, run TF models with BQML (e.g. import/export BQ <-> TF saved model, BQML Tips and Best Practices, e.g. data quality, prep data, hyperparameters tuning, how to do near real time recommendations, etc.Suggestions:1/ there should be a typo in p. 324, “In this case, the MOD function returns a value from 0 to *10*”, Mod (X, 10) should return from 0-9 (not 10) because it returns the REMINDER of the Mod function after division.2/ Can introduce GCP Data Prep to help prepare and visualize the data in addition to Data Studio and its min/max/Not Null examples as shown in the book.
Amazon Verified review Amazon
Michael Jun 21, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I used this product to quickly deepen my knowledge on GCP's BigQuery for work. At almost 400 pages I initially thought I would be skimming over certain sections because of BigQuery's product positioning among an already crowded Data Warehouse space.After a chapter on introductions and setup of projects, this book adroitly focuses on BigQuery's growing suite of ML/ AI tools and implementations. UI pictures are mostly up to date and labelled with explanations to such an extent that I feel confident using this after the 2021 BigQuery UI refresh and AI Platform refresh (Vertex AI). Also included are code snippets that in print show clearly, and if you have a digital copy of the book offer a accelerated path to practice by letting you copy and paste. I found it also useful for the book to use BigQuery free datasets to keep ancillary cloud costs down when I am running the exact same queries.As this technology grows in adoption, especially in the Adtech, Martech, and customer service verticals, I feel I will be going back to this BigQuery ML book more than my Oreilly paperback on Machine Learning Design Patterns. Although other books may have been made by Google Cloud experts, this book is made for the future experts. A novice individual, or already experienced cloud individual can exclusively use this book to acquire deep experience in BigQuery and a few other cloud services such as a data visualization tool, to boot.If you need to deepen your BigQuery expertise on the job this should be added to your list. If you are new to BigQuery and need to become an expert, congratulations! You now could only use a single, and this book is it.
Amazon Verified review Amazon
Jignesh Mehta Sep 14, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
BigQuery, as a leading cloud data warehouse platform, offers many benefits to data analytics community with respect to performance at scale but the jewel of the crown is its built-in ML capabilities! Bringing ML modeling in hands of SQL developers and where the data resides is very powerful capabilities for accelerated advanced analytics applications!This book is a perfect resource for any data analytics developer and data scientists to quickly go from zero to sixty in a week for building ML based solutions. The Book is well focused with practical approach to machine learning models within BigQuery by providing excellent use cases to work with. One can easily apply the learning to the business problem at hand. I particularly liked the flow of the book, even within a chapter, to go from introduction to advanced concepts.A complete guide to BigQuery Machine Learning for anyone who wants to solve business problem with sophisticated machine learning algorithm but with ease of SQL statements!
Amazon Verified review Amazon
Lak Lakshmanan Jul 23, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
BigQuery ML is a way for business analysts with SQL skills to be able to do predictive analytics on data in their data warehouse. The idea is to provide high quality ML in an easy to use way without Python/Tensorflow/ETL etc.This book provides a step-by-step introduction for business analysts to get full advantage of BigQuery ML. Each model type is introduced with a typical business problem and then you are given step-by-step introductions to train and predict using a public dataset. So, the book is very self contained, and it should be able to adapt the given queries to your own business problem and data.If you are an ML scientist or a data engineer, this book will not be enough. It doesn't cover all the available options such as Regularization, transformation, or Preprocessing. Follow this book with reading either the docs directly or the ML chapter in my book "BigQuery The Definitive Guide"
Amazon Verified review Amazon
Naveen Mathew Nathan S. Sep 14, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I got interested in the book once I found out about new functionalities in Google Cloud Platforms - especially about triggering models and model management using Big Query. The explanations and examples were light weight and easy to understand compared to online courses on the same topic(s). Coding along is strongly recommended. For GCP certification a more advanced course or book may be required to complement the contents of this book.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.