Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Machine Learning Security Principles
Machine Learning Security Principles

Machine Learning Security Principles: Keep data, networks, users, and applications safe from prying eyes

eBook
€8.99 €28.99
Paperback
€35.99
Audiobook
€8.99 €33.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Machine Learning Security Principles

Defining Machine Learning Security

Organizations trust machine learning (ML) to perform a wide variety of tasks today because it has proven to be relatively fast, inexpensive, and effective. Unfortunately, many people really aren’t sure what ML is because television, movies, and other media tend to provide an unrealistic view of the technology. In addition, some users engage in wishful thinking or feel the technology should be able to do more. Making matters worse, even the companies who should know what ML is about hype its abilities and make the processes used to perform ML tasks opaque. Before making ML secure, it’s important to understand what ML is all about. Otherwise, the process is akin to installing home security without actually knowing what the inside of the home contains or even what the exterior of the home looks like.

Adding security to an ML application involves understanding the data analyzed by the underlying algorithm and considering the goals of the application in interacting with that data. It also means looking at security as something other than restricting access to the data and the application (although, restricting access is a part of the picture).

The remainder of this chapter talks about the requirements for working with the coding examples. It’s helpful to have the right setup on your machine so that you can be sure that the examples will run as written.

Get in touch

Obviously, I want you to be able to work with the examples, so if you run into coding issues, please be sure to contact me at John@JohnMuellerBooks.com.

Using the downloadable source code will also save you time and effort. With these issues in mind, this chapter discusses these topics:

  • Obtaining an overview of ML
  • Defining a need for security and choosing a type
  • Making the most of this book

Building a picture of ML

People anthropomorphize computers today, giving them human characteristics, such as the ability to think. At its lowest level, a computer processes commands to manipulate data, perform comparisons, and move data around. There is no thought process involved—just electrical energy cleverly manipulated to produce a mathematical result from a given input. So, the term “machine learning” is a bit of a misnomer because the machine is learning nothing and it doesn’t understand anything. A better way to view ML is as a process of algorithm manipulation such that added weighting produces a result that better matches the data input. Once someone trains a model (the combination of algorithm and weighting added to the algorithm), it’s possible to use the model to process data that the algorithm hasn’t seen in the past and still obtain a desirable result. The result is the simulation of human thought processes so that it appears that the application is thinking when it isn’t really thinking at all.

The feature that distinguishes ML most significantly is that the computer can perform mundane tasks fast and consistently. It can’t provide original thought. A human must create the required process but, once created, the machine can outperform the human because it doesn’t require rest and doesn’t get bored. Consequently, if the data is clean, the model correct, and the anticipated result correctly defined, a machine can outshine a human. However, it’s essential to consider everything that is required to obtain a desirable result before employing ML for a particular task, and this part of the process is often lacking today. People often think that machines are much more capable than they really are and then exhibit disappointment when the machine fails to work as expected.

Why is ML important?

Despite what you may have heard from various sources, ML is more important for mundane tasks than for something earth-shattering in its significance. ML won’t enable Terminators to take over the planet, nor will this technology suddenly make it possible for humans to stop working entirely in a utopian version of the future. What ML can do is reduce the boredom and frustration that humans feel when forced to perform repetitive factory work or other tasks of the sort. In the future, at the lowest level, humans will supervise machines performing mundane tasks and be there when things go wrong.

However, the ability to simply supervise machines is still somewhat far into the future, and letting them work unmonitored is further into the future still. There are success stories, of course, but then there are also failures of the worst sort. For example, trusting the AI in a car to drive by itself without human intervention can lead to all sorts of problems. Sleeping while driving will still garner a ticket and put others at risk, as described at https://www.theguardian.com/world/2020/sep/17/canada-tesla-driver-alberta-highway-speeding. In this case, the driver was sleeping peacefully with a passenger in the front seat of the car when the police stopped him. Fortunately, the car didn’t cause an accident in this case, but there are documented instances where self-driving cars did precisely that (see https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html for an example).

Besides performing tasks, ML can perform various kinds of analysis at a speed that humans can’t match, and with greater efficiency. A doctor can rely on ML to assist in finding cancer because the ML application can recognize patterns in an MRI that the doctor can’t even see. Consequently, the ML application can help guide the doctor in the right direction. However, the doctor must still make the final determination as to whether a group of cells really is cancerous, because the ML application lacks experience and the senses that a doctor has. Likewise, ML can make a doctor’s hands steadier during surgery, but the doctor must still perform the actual task. In summary, ML is currently assistive in nature, but it can produce reliable results in that role.

Pattern recognition is a strong reason to use ML. However, the ability to recognize patterns only works when the following applies:

  • The source data is untainted
  • The training and testing data are unbiased
  • The correct algorithms are selected
  • The model is created correctly
  • Any goals are clearly defined and verified against the training and test data

Classification uses of ML rely on patterns to distinguish between types of objects or data. For example, a classification system can detect the difference between a car, a pedestrian, and a street sign (at least, a lot of the time). Unfortunately, the current state of the art clearly shows that ML has a long way to go in this regard because it’s easy to fool an application in many cases (see https://arxiv.org/pdf/1710.08864.pdf?ref=hackernoon.com for examples). There are a lot of articles now that demonstrate all of the ways in which an adversarial attack on a deep learning or ML application will render it nearly useless. So, ML works best in an environment where nothing unexpected happens, but in that environment, it works extremely well.

Recommender systems are another form of ML that try to predict something based on past data. For example, recommender systems play a huge role in online stores where they suggest some items to go with other items a person has purchased. If you’re fond of online buying, you know from experience that the recommender systems are wrong about the additional items more often than not. A recommender setup attached to a word processor for suggesting the next work you plan to type often does a better job over time. However, even in this case, you must exercise care because the recommendation is often not what you want (sometimes with hilarious results when the recipient receives the errant text).

As everything becomes more automated, ML will play an ever-increasing role in performing the mundane and repeatable elements of that automation. However, humans will also need to play an increasingly supervisory role. In the short term, it may actually appear that ML is replacing humans and putting them out of work, but in the long term, humans will simply perform different work. The current state of ML is akin to the disruption that occurred during the Industrial Revolution, where machines replaced humans in performing many manual tasks. Because of that particular disruption in the ways that things were done, a single farmer today can tend to hundreds of acres of land, and factory work is considerably safer. ML is important because it’s the next step toward making life better for people.

Identifying the ML security domain

Security doesn’t just entail the physical protection of data, which might actually be impossible for online sources such as websites where the data scientist obtains the data using screen-scraping techniques. To ensure that data remains secure, an organization must monitor and validate it prior to use for issues such as data corruption, bias, errors, and the like. When securing an ML application, it’s also essential to review issues such as these:

  • Data bias: The data somehow favors a particular group or is skewed in a manner that produces an inaccurate analysis. Model errors give hackers a wedge into gaining access to the application, its model, or underlying data.
  • Data corruption: The data may be complete, but some values are incorrect in a way that shows damage, poor formatting, or in a different form. For example, even in adding the correct state name to a dataset, such as Wisconsin, it could appear as WI, Wis, Wisc, Wisconsin, or some other legitimate, but different form.
  • Missing critical data: Some data is simply absent from the dataset or could be replaced with a random value, or a placeholder such as N/A or Null for numeric entries.
  • Errors in the data: The data is apparently present, but is incorrect in a manner that could cause the application to perform badly and cause the user to make bad decisions. Data errors are often the result of human data entry problems, rather than corruption caused by other sources, such as network errors. Hackers often introduce data errors that have a purpose, such as entering scripts in the place of values.
  • Algorithm correctness: Using the incorrect algorithm will create output that doesn’t meet analysis goals, even when the underlying data is correct in every possible manner.
  • Algorithm bias: The algorithm is designed in such a manner that it performs analysis incorrectly. This problem can also appear when weighting values are incorrect or the algorithm handles feedback values inappropriately. The bottom line is that the algorithm produces a result, but the result favors a particular group or outputs values that are skewed in some way.
  • Repeatable and verifiable results: ML applications aren’t useful unless they can produce the same results on different systems and it’s possible to verify those results in some way (even if verification requires the use of manual methods).

ML applications are also vulnerable to various kinds of software attacks, some of which are quite subtle. All of these attacks are covered in detail starting in Chapter 3 of the book. However, here is an overview of the various attack types and a quick definition of each that you can use for now:

  • Evasion: Bypassing the information security functionality built into a system.
  • Poisoning: Injecting false information into the application’s data stream.
  • Inference: Using data mining and analysis techniques to gain knowledge about the underlying dataset, and then using that knowledge to infer vulnerabilities in the associated application.
  • Trojans: Employing various techniques to create code or data that looks legitimate, but is really designed to take over the application or manipulate specific components of it.
  • Backdoors: Using system, application, or data stream vulnerabilities to gain access to the underlying system or application without providing the required security credentials.
  • Espionage: Stealing classified, sensitive data or intellectual property to gain an advantage over a person, group, or organization to perform a personnel attack.
  • Sabotage: Performing deliberate and malicious actions to disrupt normal processes, so that even if the data isn’t corrupted, biased, or damaged in some way, the underlying processes don’t interact with it correctly.
  • Fraud: Relying on various techniques, such as phishing or communications from unknown sources, to undermine the system, application, or data security in a secretive manner. This level of access can allow for unauthorized or unpaid use of the application and influence ways in which the results are used, such as providing false election projections.

The target of such an attack may not even know that the attack compromised the ML application until the results demonstrate it (the Seeing the effect of bad data section of Chapter 10, Considering the Ramifications of Deepfakes, shows a visual example of how this can happen). In fact, issues such as bias triggered by external dataset corruption can prove so subtle that the ML application continues to function in a compromised state without anyone noticing at all. Many attacks, such as privacy attacks (see the article entitled Privacy Attacks on Machine Learning Models, at https://www.infoq.com/articles/privacy-attacks-machine-learning-models/), have a direct monetary motive, rather than simple disruption.

It’s also possible to use ML applications as the attack vector. Hackers employ the latest techniques, such as relying on ML applications to attack you to obtain better results, just as you do. The article entitled 7 Ways in Which Cybercriminals Use Machine Learning to Hack Your Business, at https://gatefy.com/blog/cybercriminals-use-machine-learning-hack-business/, describes just seven of the ways in which hackers use ML in their nefarious trade. You can bet that hackers use ML in several other ways, some of them unexpected and likely unknown for now.

Distinguishing between supervised and unsupervised

ML relies on a large number of algorithms, used in a variety of ways, to produce a useful result. However, it’s possible to categorize these approaches in three (or possibly four) different ways:

  • Supervised learning
  • Unsupervised learning
  • Reinforcement learning

Some people add the fourth approach of semi-supervised learning, which is a combination of supervised and unsupervised learning. This section will only discuss the first three because they’re the most important in understanding ML.

Understanding supervised learning

Supervised learning is the most popular and easiest-to-use ML paradigm. In this case, data takes the form of an example and label pair. The algorithm builds a mapping function between the example and its label so that when it sees other examples, it can identify them based on this function. Figure 1.1 provides you with an overview of how this process works:

Figure 1.1 – Supervised learning relies on labeled examples to train the model

Figure 1.1 – Supervised learning relies on labeled examples to train the model

Supervised learning is often used for certain types of classification, such as facial recognition, and prediction, or how well an advertisement will perform based on past examples. This paradigm is susceptible to many attack vectors including someone sending data with the wrong labels or supplying data that is outside the model’s usage.

Understanding unsupervised learning

When working with unsupervised learning, the algorithm is fed a large amount of data (usually more than is required for supervised learning) and the algorithm uses various techniques to organize, group, or cluster the data. An advantage of unsupervised learning is that it doesn’t require labels: the majority of the data in the world is unlabeled. Most people consider unsupervised learning as data-driven, contrasted with supervised learning, which is task-driven. The underlying strategy is to look for patterns, as shown in Figure 1.2:

Figure 1.2 – Unsupervised learning groups or clusters like data together to train the model

Figure 1.2 – Unsupervised learning groups or clusters like data together to train the model

Unsupervised learning is often used for recommender systems because such systems receive a constant stream of unlabeled data. You also find it used for tracking buying habits and grouping users into various categories. This paradigm is susceptible to a broad range of attack vectors, but data bias, data corruption, data errors, and missing data would be at the top of the list.

Understanding reinforcement learning

Reinforcement learning is essentially different from either supervised or unsupervised learning because it has a feedback loop element built into it. The best way to view reinforcement learning is as a methodology where ML can learn from mistakes. To produce this effect, an agent, the algorithm performing the task, has a specific list of actions that it can take to affect an environment. The environment, in turn, can produce one of two signals as a result of the action. The first signals successful task completion, which reinforces a behavior in the agent. The second provides an environment state so that the agent can detect where errors have occurred. Figure 1.3 shows how this kind of relationship works:

Figure 1.3 – Reinforcement learning is based on a system of rewards and an updated state

Figure 1.3 – Reinforcement learning is based on a system of rewards and an updated state

You often see reinforcement learning used for video games, simulations, and industrial processes. Because you’re linking two algorithms together, algorithm choice is a significant priority and anything that affects the relationship between the two algorithms has the potential to provide an attack vector. Feeding the agent incorrect state information will also cause this paradigm to fail.

Using ML from development to production

It’s essential to understand that ML does have an important role to fulfill today in performing specific kinds of tasks. Figure 1.4 contains a list of typical tasks that ML applications perform today, along with the learning type used to perform the task and observations of security and other issues associated with this kind of task. In no instance will you find that ML performs any task perfectly, especially without human assistance.

Figure 1.4 – ML tasks and their types

Figure 1.4 – ML tasks and their types

Figure 1.4 doesn’t contain some of the more exotic uses for ML. For example, some people use ML to generate art (see https://www.bbc.com/news/uk-england-oxfordshire-61600523 for one of the newest examples). However, the ML application isn’t creating art. What happens instead is that the ML application learns a particular art style from examples, and then transforms another graphic, such as a family picture, into a representation using the art examples. The results can be interesting, even beautiful, but they aren’t creative. The creativity resides in the original artist and the human guiding the generation (see https://aiartists.org/ai-generated-art-tools for details). The same technique applies to ML-generated music and even videos. Many of these alternative uses for ML are interesting, but the book doesn’t cover them heavily, except for the perspective of ethical treatment of data. So, why is security so important for ML projects? The next section begins to answer that question.

Adding security to ML

Security is a necessary component of ML to ensure that results received from an analysis reflect reality. Otherwise, decisions made based on the analysis will be flawed. If the mistake made based on such analysis merely affected the analyst, then the consequences might not be catastrophic. However, ML affects people – sometimes large groups of people. When the effects are large enough, businesses fold, lawsuits ensue, and people lose faith in the ability of ML applications to produce reliable results. Adding security ensures the following:

  • Reliability
  • Verifiability
  • Repeatability
  • Transparency
  • Confidence
  • Consistency

Let’s examine how security can impact ML in more detail.

Defining the human element

At this point, it’s important to take a slight detour from the technical information presented so far to discuss the human element. Even if the processes are clear, the data is clean, the algorithms are chosen correctly, and the code is error-free, humans still provide the input and interpret the result. Humans are an indirect source of security issues in all ML scenarios. When working with humans, it’s essential to consider the five mistruths that creep into every part of the ML environment and cause security issues that are difficult or sometimes impossible to find:

  • Commission: Performing specific and overt engagement in a mistruth and supplying incorrect data. However, a mistruth of commission need not always imply an intent to mislead. Sometimes these mistruths are the result of a lack of information, incorrect information, or a need to please others. In some cases, it’s possible to detect mistruths of commission as outliers in plotted results created during analysis. Mistruths of commission create security issues by damaging the data used for analysis and therefore corrupting the model.
  • Omission: Leaving out essential details that would make the resulting conclusions different. In many cases, the person involved simply forgets to provide the information or is unaware of it. However, this mistruth also makes an appearance when the facts are inconvenient. In some cases, it’s possible to detect this sort of mistruth during missingness checks of the data or in considering the unexpected output of an algorithm. Mistruths of omission create security issues by creating holes in the data or by skewing the model.
  • Bias: Seeing the data or results in an unrealistic or counterintuitive manner due to personal concerns, environmental pressures, or traditions. Human biases often keep the person involved from seeing the patterns and outcomes that are obvious when the bias isn’t present. Environmental pressures, including issues such as tiredness, are hard to overcome and spot. The same checks that work for other kinds of bias can help root out human biases in data. Mistruths of bias create security issues by skewing the model and possibly causing the model to overfit or underfit the data.
  • Perspective: Viewing the data based on experience, environmental conditions, and available information. In reviewing the statements of witnesses to any event, it’s possible to obtain different stories from each witness, even when the witnesses are being truthful from their perspective. The same is true of ML data, algorithms, and output. Different people will see the data in different ways and it’s nearly impossible to say that one perspective is correct and another incorrect. In many cases, the only way to handle this issue is to create a consensus opinion, much as interviewers do when speaking to witnesses to an event. Mistruths of perspective cause security issues by limiting the effectiveness of the model in providing a correct solution due to the inability of computers to understand anything.
  • Frame of reference: Conveying information to another party incorrectly because the other party lacks the required experience. This kind of soft knowledge is precisely why humans are needed to interpret the analysis provided through ML. A human who has had a particular experience understands the experience and recognizes the particulars of it, but is unable to articulate the experience in a concrete manner. Mistruths of frame of reference create security issues by causing the model to misinterpret situational data and render incorrect results.

Now that you have a better idea of how humans play into the data picture, it’s time to look more at the technical issues, keeping the human element in mind.

Compromising the integrity and availability of ML models

In many respects, the ML model is a kind of black box where data goes in and results come out. Many countries now have laws mandating that models become more transparent, but still, unless you want to spend a great deal of time reviewing the inner workings of a model (assuming you have the knowledge required to understand how they work at all), it still amounts to a black box. The model is the weakest point of an ML application. It’s possible to verify and validate data, and understanding the algorithms used need not prove impossible. However, the model is a different story because the only practical ways to test it are to use test data and perform some level of verification and validation. What happens, however, if hackers or others have compromised the integrity of the model in subtle ways that don’t affect all results, just some specific results?

The integrity of a model doesn’t just involve training it with correct data but also involves keeping it trained properly. Microsoft’s Tay (see https://spectrum.ieee.org/tech-talk/artificial-intelligence/machine-learning/in-2016-microsofts-racist-chatbot-revealed-the-dangers-of-online-conversation) is an example of just how wrong training can go when the integrity of the model is compromised. In Tay’s case, unregulated Twitter messages did all the damage in about 16 hours. Of course, it took a lot longer than that to initially create the model, so the loss to Microsoft was immense. To the question of why internet trolls damaged the ML application, the answer of because they can seems trite, but ends up being on the mark. Microsoft created a new bot named Zo that fared better but was purposely limited, which serves to demonstrate there are some limits to ML.

The problem of discerning whether someone has compromised a model becomes greater for pre-trained models (see https://towardsdatascience.com/4-pre-trained-cnn-models-to-use-for-computer-vision-with-transfer-learning-885cb1b2dfc for examples). Pre-trained models are popular because training a model is a time-consuming and sometimes difficult process (pretrained models are used in a process called transfer learning where knowledge gained solving one problem is used to solve another, similar problem. For example, a model trained to recognize cars can be modified to recognize trucks as well). If you can simply plug a model into your application that someone else has trained, the entire process of creating the application is shorter and easier. However, pre-trained models also aren’t under your direct control and you have no idea of precisely how they were created. There is no way to completely validate that the model isn’t corrupted in some way. The problem is that datasets are immense and contain varied information. Creating a test harness to measure every possible data permutation and validate it is impossible.

In addition to integrity issues, ML models can also suffer performance and availability issues. For example, greedy algorithms can get stuck in local minima. Crafting data such that it optimizes the use of this condition to cause availability problems could be a form of attack. Because the data would appear correct in every way, data checks are unlikely to locate these sorts of problems. You’d need to use some sort of tuning or optimization to reduce the risk of such an attack. Algorithm choice is important when considering this issue. The easiest way to perpetrate such attacks is to modify the data at the source. However, making the attack successful would require some knowledge of the model, a level of knowledge known as white box access.

A major issue that allows for integrity and availability attacks is the assumption on the part of humans (even designers) that ML applications think in the same way as we do, which couldn’t be further from the truth. As this book progresses, you will discover that ML isn’t anything like a thought process—it’s a math process, which means treating adversarial attacks as a math or data problem. Some researchers have suggested including adversarial data in the training data for algorithms so that the algorithm can learn to spot them (learn, in this case, is simply a shortcut method of saying that the model has weights and variables adjusted to process the data in a manner that allows for a correct output result). Of course, researchers are looking into this and many other solutions for dealing with adversarial attacks that cause integrity - and performance-type problems. There is currently no silver bullet solution.

Describing the types of attacks against ML

The introduction to this chapter lists a number of attack types on data (such as data bias) and the application (evasion). The previous section lists some types of attacks perpetrated against the underlying model. As a collection, all of these attacks are listed as adversarial attacks, wherein the ML application as a whole tends not to perform as intended and often does something unexpected. This isn’t a new phenomenon—some people experimented with adversarial attacks as early as 2004 (see https://dl.acm.org/doi/10.1145/1014052.1014066 for an article on the issue). However, it has become a problem because ML and deep learning are now deeply embedded within society in such a way that even small problems can lead to major consequences. In fact, sites such as The Daily Swig (https://portswigger.net/daily-swig/vulnerabilities) follow these vulnerabilities because there are too many for any single individual to track.

Underlying the success of these attacks is that ML essentially relies on statistics. The transformation of input values to the desired output, such as the categorization of a particular sign as a stop sign, relies on the pixels in a stop sign image relating statistically well enough to the model’s trained values to make it into the stop sign category. By adding patches to a stop sign, it no longer matches the learned pattern well enough for the model to classify it as a stop sign. Because of the misclassification, a self-driving car may not stop as required but run right through the stop sign, causing an accident (often to the hacker’s delight).

Several elements come into play in this case. A human can look at the sign and see that it’s octangular, red, and says Stop, even if someone adds little patches to it. In addition, humans understand the concept of a sign. An ML application receives a picture consisting of pixels. It doesn’t understand signs, octangular or otherwise, the color red, or necessarily read the word Stop. All the ML application is able to do is match the object in a picture created with pixels to a particular pattern it has been trained to statistically match. As mentioned earlier in the chapter, machines don’t think or feel anything—they perform computations.

Modifying a street sign is an example of an overt attack. ML is even more susceptible to overt attacks. For example, the article at https://arxiv.org/pdf/1801.01944.pdf explains how to modify a sound file such that it embeds a command in the sound file that the ML application will recognize, but a human can’t even hear. The commands could do something innocuous, such as turn the speaker volume up to maximum, but they could perform nefarious tasks as well. Just how terrible the attack becomes depends on the hacker’s knowledge of the target and the goal of the attack. Someone’s smart speaker could send commands to a voice-activated security system to turn the system off when the owner isn’t at home, or perhaps it could trigger an alarm, depending on what the hacker wants (read Attackers can force Amazon Echos to hack themselves with self-issued commands at https://arstechnica.com/information-technology/2022/03/attackers-can-force-amazon-echos-to-hack-themselves-with-self-issued-commands/ to get a better understanding of how any voice-activated device can be hacked).

Attacks can affect any form of ML application. Simply changing the order of words in a text document can cause an ML application to misclassify the text (see the article at https://arxiv.org/abs/1812.00151). This sort of attack commonly thwarts the activities of spam and sentiment detectors but could be applied to any sort of textual documentation. Most experts classify this kind of attack as a paraphrasing attack. (See the Developing a simple spam filter example section of Chapter 4, Considering the Threat Environment, for details on working with text.) When you consider how much automated text processing occurs because there is simply too much being generated for humans to handle alone, this kind of attack can take on monumental proportions.

Considering what ML security can achieve

The essential goal of ML security is to obtain more consistent, reliable, trustworthy, and unbiased results from ML algorithms. Security focuses on creating an environment where the data, algorithm, responses, and analysis all combine to allow ML to produce believable and useful results. The security used with ML applications must perform these tasks in a manner that doesn’t slow the application perceptibly or force it to use huge amounts of additional resources. To accomplish these goals, the users of ML applications need to do the following:

  • Set understandable and achievable result goals that are verifiable, consistent, and answer specific needs
  • Train personnel (which means everyone in the organization, along with consultants and third parties) to interact with the application and its data appropriately
  • Ensure that data passes all of the requirements for proper format, lack of missing elements, absence of bias, and lack of various forms of corruption
  • Choose algorithms that actually perform tasks in a manner that will match the goals set for the ML application
  • Use training techniques that create a reliable model that won’t overfit or underfit the data
  • Perform testing that validates the data, algorithms, and models used for the ML application
  • Verify the resulting application using real-world data that the ML application hasn’t seen in the past

Once an ML application meets all of these requirements, it can provide reliable results more quickly and consistently than humans can for mundane, repeatable tasks. Over time, the humans using an ML application should develop the trust required to make using the application worthwhile. In addition, humans can now move on to other areas of interest, making it possible for a single person to accomplish a great deal more than would otherwise be reasonable. Now that you have a good overview of the technical aspects of ML security, it’s time to get a development environment together so you can work with the book’s code.

Setting up for the book

I want to ensure that you have the best possible experience when working through the examples in this book. To accomplish that task, this book relies on the literate programming technique originally explored by Donald Knuth and detailed in his paper at http://www.literateprogramming.com/knuthweb.pdf. The crux of this approach is that it provides you with a notebook-like environment in which to work where it’s possible to freely mix code and non-code elements, including graphics. Because of its reliance on multiple methods of conveying information, this approach is exceptionally clear and easy to understand. Plus, it promotes experimentation at a level that many people don’t experience using other approaches.

No matter how inviting a programming environment might be, however, you still have to have a specific level of knowledge to enjoy it. The first section that follows describes what you need to know to use the book successfully. Because of the programming environment I’ve chosen to use, those requirements may be fewer than expected.

It’s also critical that you use the same tools that I used in creating the examples. This requirement isn’t meant to hinder you in any way, but to ensure that you don’t spend a lot of time overcoming environmental issues while attempting to run the code. The second section that follows describes the programming setup I used so that you can replicate it on your system.

To ensure that you don’t have to battle typos and other problems with hand-typed code, I also provide a downloadable source that makes it incredibly easy to work with the programming examples. Most people do benefit from eventually typing their own code and creating their own examples, but to make the learning process easier, you really do want to use the downloadable source if at all possible. The blog post at http://blog.johnmuellerbooks.com/2014/01/10/verifying-your-hand-typed-code/ provides you with some additional details in this regard. You can obtain the downloadable source code for this book from the publisher’s GitHub site at https://github.com/PacktPublishing/Machine-Learning-Security-Principles or my website at http://www.johnmuellerbooks.com/source-code/.

What do you need to know?

The main audience for this book is data scientists and, to a lesser extent, researchers, so I’m assuming that you already know something about data sources, data management techniques, and the algorithms used to perform analysis on data. I don’t expect you to have an advanced degree in these topics, but you should know that a .csv file contains data that is separated in fields using commas. In addition, it would be helpful to have at least a passing knowledge of common algorithms such as Bayes’ theorem. The notes and references we provide in the book will help you locate the additional information you need, but this book doesn’t provide a tutorial on essential data science topics.

To provide the best possible programming environment, this book also relies on the Python programming language. Again, you won’t find a tutorial on this language here, but the use of the literate programming technique should aid in your understanding if you have worked with programming languages in the past. Obviously, the more you know about Python, the less effort you’ll need to expend on understanding the code. People who are in management and don’t really want to get into the coding details will still find this book useful for the theory it provides, so you could possibly work with the book without knowing anything about Python to obtain theoretical knowledge.

It’s also essential that you know how to work with whatever platform you’re using. You need to know how to install software, work with the filesystem, and perform other general user tasks with whatever platform you choose to use. Fortunately, you have lots of options for using Jupyter Notebook, the recommended IDE for this book, or Google Colab, a great alternative that will work with your mobile device. However, this extensive list of platforms also means that we can’t provide you with much in the way of platform support.

Considering the programming setup

To get the best results from a book’s source code, you need to use the same development products as the book’s author. Otherwise, you can’t be sure whether an error you find is a bug in the development product or from the source code. The example code in this book is tested using both Jupyter Notebook (for desktop systems) (https://jupyter.org/) and Google Colab (for tablet users) (https://colab.research.google.com/notebooks/welcome.ipynb). Desktop system users will benefit greatly from using Jupyter Notebook, especially if they have limited access to a broadband connection. Whichever product you use, the code is tested using Python version 3.8.3, although any Python 3.7 or 3.8 version will work fine. Newer versions of Python tend to create problems with libraries used with the example code because the vendors who create the libraries don’t necessarily update them at the same speed as Python is updated. You can read about these changes at https://docs.python.org/3/whatsnew/3.8.html. You can check your Python version using the following code:

import sys
print('Python Version:\n', sys.version)

I highly recommend using a multi-product toolkit called Anaconda (https://www.anaconda.com/products/individual), which includes Jupyter Notebook and a number of tools, such as conda, for installing libraries with fewer headaches. Figure 1.5 shows some of the tools you get with Anaconda. I wrote the examples using the 2020.07 version of Anaconda, which you can obtain at https://repo.anaconda.com/archive/. Make sure you get the right file for your programming platform:

  • Anaconda3-2020.07-Linux-ppc64le.sh (PowerPC) or Anaconda3-2020.07-Linux-x86_64.sh for Linux
  • Anaconda3-2020.07-MacOSX-x86_64.pkg or Anaconda3-2020.07-MacOSX-x86_64.sh for macOS
  • Anaconda3-2020.07-Windows-x86.exe (32-bit) or Anaconda3-2020.07-Windows-x86_64.exe (64-bit) for Windows
Figure 1.5 – Anaconda provides you with access to a wide variety of tools

Figure 1.5 – Anaconda provides you with access to a wide variety of tools

It’s possible to test your Anaconda version using the following code (which won’t work on Google Colab since it doesn’t have Anaconda installed):

import os
result = os.popen('conda list anaconda$').read()
print('\nAnaconda Version:\n', result)

The examples rely on a number of libraries, but three libraries are especially critical. If you don’t have the right version installed, the examples won’t work:

  • NumPy: Version 1.18.5 or greater
  • scikit-learn: Version 0.23.1 or greater
  • pandas: Version 1.1.3 or greater

Use this code to check your library versions:

!pip show numpy
!pip show scikit-learn
!pip show pandas

Now that you have a workable development environment, it’s time to begin working through some example code in the chapters that follow.

Summary

This chapter has helped you understand various kinds of ML applications and how those applications are affected by various security threats. It has also emphasized the limitations of ML and pointed out some of the misconceptions that people have about ML – and possibly computers in general. Finally, you have discovered the ways in which humans inadvertently introduce security issues into ML applications by making invalid assumptions and by corrupting data in ways that humans understand, but computers don’t.

Knowing about the various forces at work to corrupt your ML model and data may be frightening at first, but there are certain things you can do to mitigate the threat, such as ensuring users are trained not to unintentionally introduce bias into the dataset. ML security measures can help you achieve these goals in an efficient manner. Of course, constant diligence is also a requirement.

The dataset end of things takes focus in the next chapter. It’s not just users who can ruin your day by introducing a security problem; using the wrong dataset source or any number of other issues can also be a problem. This next chapter will help you understand these issues so that you can consider the solutions presented in light of your organization’s needs.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Discover how hackers rely on misdirection and deep fakes to fool even the best security systems
  • Retain the usefulness of your data by detecting unwanted and invalid modifications
  • Develop application code to meet the security requirements related to machine learning

Description

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.

Who is this book for?

Whether you’re a data scientist, researcher, or manager working with machine learning techniques in any aspect, this security book is a must-have. While most resources available on this topic are written in a language more suitable for experts, this guide presents security in an easy-to-understand way, employing a host of diagrams to explain concepts to visual learners. While familiarity with machine learning concepts is assumed, knowledge of Python and programming in general will be useful.

What you will learn

  • Explore methods to detect and prevent illegal access to your system
  • Implement detection techniques when access does occur
  • Employ machine learning techniques to determine motivations
  • Mitigate hacker access once security is breached
  • Perform statistical measurement and behavior analysis
  • Repair damage to your data and applications
  • Use ethical data collection methods to reduce security risks

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 30, 2022
Length: 450 pages
Edition : 1st
Language : English
ISBN-13 : 9781804615409
Vendor :
Google
Category :
Languages :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Dec 30, 2022
Length: 450 pages
Edition : 1st
Language : English
ISBN-13 : 9781804615409
Vendor :
Google
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 103.97
Machine Learning Model Serving Patterns and Best Practices
€31.99
Machine Learning Security Principles
€35.99
Machine Learning Techniques for Text
€35.99
Total 103.97 Stars icon
Banner background image

Table of Contents

18 Chapters
Part 1 – Securing a Machine Learning System Chevron down icon Chevron up icon
Chapter 1: Defining Machine Learning Security Chevron down icon Chevron up icon
Chapter 2: Mitigating Risk at Training by Validating and Maintaining Datasets Chevron down icon Chevron up icon
Chapter 3: Mitigating Inference Risk by Avoiding Adversarial Machine Learning Attacks Chevron down icon Chevron up icon
Part 2 – Creating a Secure System Using ML Chevron down icon Chevron up icon
Chapter 4: Considering the Threat Environment Chevron down icon Chevron up icon
Chapter 5: Keeping Your Network Clean Chevron down icon Chevron up icon
Chapter 6: Detecting and Analyzing Anomalies Chevron down icon Chevron up icon
Chapter 7: Dealing with Malware Chevron down icon Chevron up icon
Chapter 8: Locating Potential Fraud Chevron down icon Chevron up icon
Chapter 9: Defending against Hackers Chevron down icon Chevron up icon
Part 3 – Protecting against ML-Driven Attacks Chevron down icon Chevron up icon
Chapter 10: Considering the Ramifications of Deepfakes Chevron down icon Chevron up icon
Chapter 11: Leveraging Machine Learning for Hacking Chevron down icon Chevron up icon
Part 4 – Performing ML Tasks in an Ethical Manner Chevron down icon Chevron up icon
Chapter 12: Embracing and Incorporating Ethical Behavior Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Full star icon Half star icon 4.4
(8 Ratings)
5 star 50%
4 star 37.5%
3 star 12.5%
2 star 0%
1 star 0%
Filter icon Filter
Top Reviews

Filter reviews by




Adaobi Mar 12, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Machine Learning Security Principles is so much more than a book about security. It is a training manual on how to be responsible with data in a world where everyone is incorporating ML into every aspect of their business without truly understanding what ML is or how to use it effectively.ML has made mundane tasks so much more efficient and easier to process, but has in many ways has left organizations and the data they have vulnerable to hackers. John Mueller's expertise in AI, security, and programming makes him a great go-to source for understanding what ML is, learning how to secure your organization's data and make your network less vulnerable to attacks, and figuring out whether you are dealing with fraud. He even seals it all by showing you how to be ethically responsible when building your ML applications so that you're not holding on to such extremely sensitive data in the first place.This book is and informative and important read for anyone working with ML systems and emphasizes the importance of safeguarding those systems.
Amazon Verified review Amazon
Disesdi Susanna Cox Mar 16, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
As an industry practitioner working in the machine learning security space, I found this to be a fantastic introduction to many security challenges facing AI/ML engineers, and critically, their mitigations. The book covers not only adversarial machine learning attacks, but also non-ML driven vulnerabilities, and gives stakeholders solid advice on how to address these. I particularly appreciated advice on how to minimize threat surfaces and “avoid helping hackers,” critical information for an industry where security can sometimes be a lower priority than rapid prototyping and innovation. I would love to see future editions give even more emphasis to putting security into production, as in my experience this is something many organizations struggle with. Overall this book is a huge step forward for ML security awareness, and a must-read for anyone working on AI/ML systems in production.
Amazon Verified review Amazon
Juan Jose Apr 08, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
As a cybersecurity professional turned AI engineer, I have been searching for resources that combine both fields, and "Machine Learning for Security: Principles, Applications, and Techniques" has not disappointed me. This book is an excellent compendium of essential knowledge, and the authors have made it engaging and accessible to readers with varying levels of expertise.The book begins by laying a solid foundation of machine learning concepts and gradually moves to discuss their applications in the realm of cybersecurity. What truly sets this book apart is its use of real-world examples and case studies, making it easier to understand the practical aspects of implementing these techniques in diverse security scenarios. The hands-on exercises and code snippets provided throughout the book are invaluable for those looking to apply their newfound knowledge.As someone who is passionate about responsible AI, I appreciate the authors' dedication to addressing the ethical considerations of utilizing machine learning in security applications. The book thoughtfully discusses potential biases and pitfalls that may arise in these systems and offers guidance on designing transparent and ethical algorithms. This attention to detail sets the book apart from others in the field.In conclusion, "Machine Learning for Security: Principles, Applications, and Techniques" is an indispensable resource for anyone interested in the confluence of machine learning and cybersecurity. Whether you are a seasoned professional or a newcomer, this book will serve as a trusted guide, helping you navigate and excel in this rapidly evolving domain.
Amazon Verified review Amazon
Luca Massaron Feb 28, 2023
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The elephant in the room is that we do talk a lot about machine learning technicalities, from model building to deploying, but the security and reliability of the solutions we create is seldom mentioned or considered anywhere. John's book, for which I have been one of the technical reviewers, is one of the few ones to illustrate and exemplify what security implies in machine learning.Using a clear language and many examples, the book approaches the topic by going from defining machine learning security to specific areas of interest such as risk mitigation in model development, adversarial machine learning attacks, anomalies, malware on systems and networks. It also touches topics related to security such as frauds, deep fakes, ethical behavior and fairness in machine learning.As a machine learning expert I found much information on the security world that I didn't know. I noticed and appreciated how the author takes great care in explaining core concepts and ideas from the basis, making it an ideal guide for everyone working in machine learning and AI and willing to approach security from its foundations. I recommend the book as a solid tool to acquire all the knowledge to rethink machine learning and AI also under the perspective of security.
Amazon Verified review Amazon
Nirmal B Feb 18, 2023
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
I got an opportunity to be an early reviewer of this book. I must say that it is one of the rare collections that you will find about security in ML models. It is very common that people write and talk about building ML models, however it is always rare that people talk about securing the ML model itself. I work in security domain, and ML; and I have found that because data science and ML are mostly about using open source libraries and packages, sometimes the security or threat modeling of the ML system is overlooked or bypassed. However if your data or model is corrupted, then the model will misbehave or behave as instructed by the hackers.Author has done a great job in covering security principles from different stages of ML workflow- including training data to inference (model poisoning and evasion), along with anomalies and what to look for.The only reason I gave 4 instead of 5, is because the book has tried to cover little bit more information than actually needed from ML security standpoint. Some of the sections like Network related security and AI fairness, and ethical AI are good information, but I do also feel it overloads from different directions. However if you are looking for more info the better, this could be added value too.Overall it is a great book and must read if you are building ML models and want to do it in a secure way. Think about this- if you want to put your model in production, a working model is not the suffice answer, a working and secured model is the way to go :)
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.