Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning R for Geospatial Analysis

You're reading from   Learning R for Geospatial Analysis Leverage the power of R to elegantly manage crucial geospatial analysis tasks

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher Packt
ISBN-13 9781783984367
Length 364 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Dorman Michael Dorman
Author Profile Icon Michael Dorman
Michael Dorman
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. The R Environment FREE CHAPTER 2. Working with Vectors and Time Series 3. Working with Tables 4. Working with Rasters 5. Working with Points, Lines, and Polygons 6. Modifying Rasters and Analyzing Raster Time Series 7. Combining Vector and Raster Datasets 8. Spatial Interpolation of Point Data 9. Advanced Visualization of Spatial Data A. External Datasets Used in Examples
B. Cited References
Index

Spatially interpolating point data


Spatial interpolation is the procedure by which the behavior of a certain phenomenon of interest is predicted in locations where it has not been measured. For this purpose, we need a spatial prediction model—a set of procedures to obtain the predicted values given the calibration data. The two types of calibration data usually encountered are:

  • Field measurements: Available for a limited set of locations (usually points), for example, meteorological data from stations in Spain

  • Covariates: Available for each location within the area of interest, for example, elevation data from Spain's DEM

The spatial prediction model of our choice is calibrated using the calibration data. This model can then be used to calculate the predicted level of the phenomenon of interest in any location (usually points). The two main types of spatial interpolation methods recognized are:

  • Deterministic model: In this model, model parameter values are arbitrarily determined

  • Statistical...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image