Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Interpretable Machine Learning with Python

You're reading from   Interpretable Machine Learning with Python Build explainable, fair, and robust high-performance models with hands-on, real-world examples

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803235424
Length 606 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Serg Masís Serg Masís
Author Profile Icon Serg Masís
Serg Masís
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Interpretation, Interpretability, and Explainability; and Why Does It All Matter? 2. Key Concepts of Interpretability FREE CHAPTER 3. Interpretation Challenges 4. Global Model-Agnostic Interpretation Methods 5. Local Model-Agnostic Interpretation Methods 6. Anchors and Counterfactual Explanations 7. Visualizing Convolutional Neural Networks 8. Interpreting NLP Transformers 9. Interpretation Methods for Multivariate Forecasting and Sensitivity Analysis 10. Feature Selection and Engineering for Interpretability 11. Bias Mitigation and Causal Inference Methods 12. Monotonic Constraints and Model Tuning for Interpretability 13. Adversarial Robustness 14. What’s Next for Machine Learning Interpretability? 15. Other Books You May Enjoy
16. Index

Evaluating adversarial robustness

It’s necessary to test your systems in any engineering endeavor to see how vulnerable they are to attacks or accidental failures. However, security is a domain where you must stress-test your solutions to ascertain what level of attacks are needed to make your system break down beyond an acceptable threshold. Furthermore, figuring out what level of defense is needed to curtail an attack is useful information too.

Comparing model robustness with attack strength

We now have two classifiers we can compare against an equally strengthened attack, and we try different attack strengths to see how they fare across all of them. We will use FSGM because it’s fast, but you could use any method!

The first attack strength we can assess is no attack strength. In other words, what is the classification accuracy against the test dataset with no attack? We already had stored the predicted labels for both the base (y_test_pred) and robust...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image