ML is a popular subfield of AI, one which covers a very wide scope. One of the reasons for this popularity is the comprehensive toolbox of sophisticated algorithms, techniques, and methodologies under its gambit. This toolbox has been developed and improved over the years, and new ones are being researched on an ongoing basis. To understand and use the ML toolbox wisely, consider the following few ways of categorizing it.
Categorization based on amount of human supervision:
- Supervised learning: This class of learning involves high-human supervision. The algorithms under supervised learning utilize the training data and associated outputs to learn a mapping between the two and apply the same on unseen data. Classification and regression are two major types of supervised learning algorithms.
- Unsupervised learning: This class of algorithms attempts to learn inherent latent structures, patterns, and relationships from the input data without any associated outputs/labels (human supervision). Clustering, dimensionality reduction, association rule mining, and so on are a few major types of unsupervised learning algorithms.
- Semi-supervised learning: This class of algorithms is a hybrid of supervised and unsupervised learning. In this case, the algorithms work with small amounts of labeled training data and more of unlabeled data. Thus making a creative use of both supervised and unsupervised methods to solve a given task.
- Reinforcement learning: This class of algorithms is a bit different from supervised and unsupervised learning methods. The central entity here is an agent, which trains over a period while interacting with its environment to maximize some reward/award. The agent iteratively learns and changes strategies/policies based on rewards/penalties from interacting with the environment.
Categorization based on data availability:
- Batch learning: This is also termed as offline learning. This type of learning is utilized when the required training data is available, and a model can be trained and fine-tuned before deploying into production/real world.
- Online learning: As the name suggests, in this case the learning is not stopped once the data is available. Rather, in this case, data is fed into the system in mini-batches and the training process continues with new batches of data.
The previously discussed categorizations give us an abstract view of how ML algorithms can be organized, understood, and utilized. The most common way to categorize them is into supervised and unsupervised learning algorithms. Let's go into a bit more detail about these two categories as this should help us get started for further advanced topics to be introduced later.