Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning with TensorFlow

You're reading from   Hands-On Deep Learning with TensorFlow Uncover what is underneath your data!

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781787282773
Length 174 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dan Van Boxel Dan Van Boxel
Author Profile Icon Dan Van Boxel
Dan Van Boxel
Arrow right icon
View More author details
Toc

Wrapping up deep CNN

We're going to wrap-up deep CNN by evaluating our model's accuracy. Last time, we set up the final font recognition model. Now, let's see how it does. In this section, we're going to learn how to handle dropouts during training. Then, we'll see what accuracy the model achieved. Finally, we'll visualize the weights to understand what the model learned.

Make sure you pick up in your IPython session after training in the previous model. Recall that when we trained our model, we used dropout to remove some outputs.

While this helps with overfitting, during testing we want to make sure to use every neuron. This both increases the accuracy and makes sure that we don't forget to evaluate part of the model. And that's why in the following code lines we have, keep_prob is 1.0, to always keep all the neurons.

# Check accuracy on train set
        A = accuracy.eval(feed_dict={x: train,
            y_: onehot_train, keep_prob: 1.0})
       ...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image