Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Deep Learning for Games

You're reading from   Hands-On Deep Learning for Games Leverage the power of neural networks and reinforcement learning to build intelligent games

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781788994071
Length 392 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Micheal Lanham Micheal Lanham
Author Profile Icon Micheal Lanham
Micheal Lanham
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: The Basics FREE CHAPTER
2. Deep Learning for Games 3. Convolutional and Recurrent Networks 4. GAN for Games 5. Building a Deep Learning Gaming Chatbot 6. Section 2: Deep Reinforcement Learning
7. Introducing DRL 8. Unity ML-Agents 9. Agent and the Environment 10. Understanding PPO 11. Rewards and Reinforcement Learning 12. Imitation and Transfer Learning 13. Building Multi-Agent Environments 14. Section 3: Building Games
15. Debugging/Testing a Game with DRL 16. Obstacle Tower Challenge and Beyond 17. Other Books You May Enjoy

Transfer learning

Imitation Learning, by definition, falls into a category of Transfer Learning (TL). We can define Transfer Learning as the process by which an agent or DL network is trained by transference of experiences from one to the other. This could be as simple as the observation training we just performed, or as complex as swapping layers/layer weights in an agent's brain, or just training an agent on a similar task.

Intransfer learningwe need to make sure the experiences or previous weights we use are generalized. Through the foundational chapters in this book (chapters 1-3), we learned the value of generalization using techniques such as dropout and batch normalization. We learned that these techniques are important for more general training; the form of training that allows the agent/network better inference on test data. This is no different than if we were...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime