Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Feature Engineering Made Easy

You're reading from   Feature Engineering Made Easy Identify unique features from your dataset in order to build powerful machine learning systems

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781787287600
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Divya Susarla Divya Susarla
Author Profile Icon Divya Susarla
Divya Susarla
Sinan Ozdemir Sinan Ozdemir
Author Profile Icon Sinan Ozdemir
Sinan Ozdemir
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Feature Engineering FREE CHAPTER 2. Feature Understanding – What's in My Dataset? 3. Feature Improvement - Cleaning Datasets 4. Feature Construction 5. Feature Selection 6. Feature Transformations 7. Feature Learning 8. Case Studies 9. Other Books You May Enjoy

Feature construction – can we build it?

While in previous chapters we focused heavily on removing features that were not helping us with our machine learning pipelines, this chapter will look at techniques in creating brand new features and placing them correctly within our dataset. These new features will ideally hold new information and generate new patterns that ML pipelines will be able to exploit and use to increase performance.

These created features can come from many places. Oftentimes, we will create new features out of existing features given to us. We can create new features by applying transformations to existing features and placing the resulting vectors alongside their previous counterparts. We will also look at adding new features from separate party systems. As an example, if we are working with data attempting to cluster people based on shopping behaviors, then we might benefit from adding in census data that is separate from the corporation and their purchasing data. However, this will present a few problems:

  • If the census is aware of 1,700 Jon does and the corporation only knows 13, how do we know which of the 1,700 people match up to the 13? This is called entity matching
  • The census data would be quite large and entity matching would take a very long time

These problems and more make for a fairly difficult procedure but oftentimes create a very dense and data-rich environment.

In this chapter, we will take some time to talk about the manual creation of features through highly unstructured data. Two big examples are text and images. These pieces of data by themselves are incomprehensible to machine learning and artificial intelligence pipelines, so it is up to us to manually create features that represent the images/pieces of text. As a simple example, imagine that we are making the basics of a self-driving car and to start, we want to make a model that can take in an image of what the car is seeing in front of it and decide whether or not it should stop. The raw image is not good enough because a machine learning algorithm would have no idea what to do with it. We have to manually construct features out of it. Given this raw image, we can split it up in a few ways:

  • We could consider the color intensity of each pixel and consider each pixel an attribute:
    • For example, if the camera of the car produces images of 2,048 x 1,536 pixels, we would have 3,145,728 columns
  • We could consider each row of pixels as an attribute and the average color of each row being the value:
    • In this case, there would only be 1,536 rows
  • We could project this image into space where features represent objects within the image. This is the hardest of the three and would look something like this:

Stop sign

Cat

Sky

Road

Patches of grass

Submarine

1

0

1

1

4

0

 

Where each feature is an object that may or may not be within the image and the value represents the number of times that object appears in the image. If a model were given this information, it would be a fairly good idea to stop!

You have been reading a chapter from
Feature Engineering Made Easy
Published in: Jan 2018
Publisher: Packt
ISBN-13: 9781787287600
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime