Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Embedded Programming with Modern C++ Cookbook

You're reading from   Embedded Programming with Modern C++ Cookbook Practical recipes to help you build robust and secure embedded applications on Linux

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838821043
Length 412 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Igor Viarheichyk Igor Viarheichyk
Author Profile Icon Igor Viarheichyk
Igor Viarheichyk
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Fundamentals of Embedded Systems 2. Setting Up the Environment FREE CHAPTER 3. Working with Different Architectures 4. Handling Interrupts 5. Debugging, Logging, and Profiling 6. Memory Management 7. Multithreading and Synchronization 8. Communication and Serialization 9. Peripherals 10. Reducing Power Consumption 11. Time Points and Intervals 12. Error Handling and Fault Tolerance 13. Guidelines for Real-Time Systems 14. Guidelines for Safety-Critical Systems 15. Microcontroller Programming 16. Other Books You May Enjoy

Preface

For a long time, development for embedded systems required either plain C or assembly language. There was a host of good reasons for this. The hardware did not have enough resources to run applications written in higher-level programming languages, such as C++, Java, or Python, but more importantly, there was no real need to write software in these languages. Limited hardware resources put a limit on software complexity, the functionality of embedded applications remained relatively simple, and the capabilities of C were sufficient to implement it.

As a result of the progress in hardware development, more and more embedded systems nowadays are powered by inexpensive yet powerful System-on-Chip capable of running a general-purpose multitasking operating system such as Linux.

Growing hardware capabilities demand more complex software, and more and more often C++ becomes the language of choice for new embedded systems. With its you don't pay for what you don't use approach it allows developers to create applications that use computational and memory resources, like applications written in C, but gives developers many more tools for dealing with complexity and safer resource management, such as object-oriented programming and the RAII idiom.

Seasoned embedded developers with substantial experience in C often tend to write code in C++ in a similar, habitual way, considering this language just as an object-oriented extension of C, a C with classes. Modern C++, however, has its own best practices and concepts that, properly used, help developers avoid common pitfalls and allow them to do a lot in a few lines of code.

On the other side, developers with C++ experience entering the world of embedded systems should be aware of the requirements, limitations, and capabilities of specific hardware platforms and application domains and design their C++ code accordingly.

The goal of this book is to bridge this gap and demonstrate how features and best practices of modern C++ can be applied in the context of embedded systems.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime