In this chapter, we will be focusing on the basics of neural networks, including input/output layers, hidden layers, and how the networks learn through forward and backpropagation. We will start with the standard multilayer perceptron networks, talk about their building blocks, and illustrate how they learn step-by-step. We will also introduce a few, popular standard models such as Convolutional Neural Networks (CNN), Restricted Boltzmann Machines (RBM), and recurrent neural network (RNN) as well as its variation Long Short-Term Memory (LSTM). We will outline the key, critical components for the successful application of the models, and explain some important concepts to help you gain a better understanding of why these networks work so well in certain areas. In addition to a theoretical introduction, we will also show example code snippets...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand