Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Data Science Projects with Python

You're reading from   Data Science Projects with Python A case study approach to successful data science projects using Python, pandas, and scikit-learn

Arrow left icon
Product type Paperback
Published in Apr 2019
Publisher Packt
ISBN-13 9781838551025
Length 374 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Stephen Klosterman Stephen Klosterman
Author Profile Icon Stephen Klosterman
Stephen Klosterman
Arrow right icon
View More author details
Toc

Table of Contents (9) Chapters Close

Data Science Projects with Python
Preface
1. Data Exploration and Cleaning 2. Introduction toScikit-Learn and Model Evaluation FREE CHAPTER 3. Details of Logistic Regression and Feature Exploration 4. The Bias-Variance Trade-off 5. Decision Trees and Random Forests 6. Imputation of Missing Data, Financial Analysis, and Delivery to Client Appendix

Introduction to Scikit-Learn


While pandas will save you a lot of time in loading, examining, and cleaning data, the machine learning algorithms that will enable you to do predictive modeling are located in other packages. We consider scikit-learn to be the premier machine learning package for Python, outside of deep learning. While it's impossible for any one package to offer "everything," scikit-learn comes pretty close in terms of accommodating a wide range of approaches for classification and regression, and unsupervised learning. That being said, a few other packages you should also be aware of are as follows:

SciPy:

  • Most of the packages we've used so far are actually part of the SciPy ecosystem.

  • SciPy itself offers lightweight functions for classical approaches such as linear regression and linear programming.

StatsModels:

  • More oriented toward statistics and more comfortable for users familiar with R

  • Can get p-values and confidence intervals on regression coefficients

  • Capability for time series...

You have been reading a chapter from
Data Science Projects with Python
Published in: Apr 2019
Publisher: Packt
ISBN-13: 9781838551025
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image