Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Data Analytics for Marketing

You're reading from   Data Analytics for Marketing A practical guide to analyzing marketing data using Python

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803241609
Length 452 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Guilherme Diaz-Bérrio Guilherme Diaz-Bérrio
Author Profile Icon Guilherme Diaz-Bérrio
Guilherme Diaz-Bérrio
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1: Fundamentals of Analytics FREE CHAPTER
2. Chapter 1: What is Marketing Analytics? 3. Chapter 2: Extracting and Exploring Data with Singer and pandas 4. Chapter 3: Design Principles and Presenting Results with Streamlit 5. Chapter 4: Econometrics and Causal Inference with Statsmodels and PyMC 6. Part 2: Planning Ahead
7. Chapter 5: Forecasting with Prophet, ARIMA, and Other Models Using StatsForecast 8. Chapter 6: Anomaly Detection with StatsForecast and PyMC 9. Part 3: Who and What to Target
10. Chapter 7: Customer Insights – Segmentation and RFM 11. Chapter 8: Customer Lifetime Value with PyMC Marketing 12. Chapter 9: Customer Survey Analysis 13. Chapter 10: Conjoint Analysis with pandas and Statsmodels 14. Part 4: Measuring Effectiveness
15. Chapter 11: Multi-Touch Digital Attribution 16. Chapter 12: Media Mix Modeling with PyMC Marketing 17. Chapter 13: Running Experiments with PyMC 18. Index 19. Other Books You May Enjoy

Dealing with common data issues

Make no mistake, you will spend a large chunk of your time cleaning data or dealing with messy data, either dealing with mislabeled data, wrong formats, or missing data, among other issues. In this section, we will go through the most common problems that will affect your modeling efforts. Let’s start with outliers and missing values.

Bill Gates walks into a bar

The classical example of outlier effects is as follows:

“10 men are sitting in a bar. The average income of the 10 men is $50,000. Suddenly, one man walks out and Bill Gates walks in. Now, the average income of the 10 men in the bar is $40 million.”

We touched upon this issue when we discussed the difference between the mean and the median. But how do you deal with it? The easiest way is simply to remove the data point. You essentially ignore it and assume it does not exist. If you are dealing with a lot of data points, this might seem reasonable. But as an analyst...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image