Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Cracking the Data Engineering Interview

You're reading from   Cracking the Data Engineering Interview Land your dream job with the help of resume-building tips, over 100 mock questions, and a unique portfolio

Arrow left icon
Product type Paperback
Published in Nov 2023
Publisher Packt
ISBN-13 9781837630776
Length 196 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Kedeisha Bryan Kedeisha Bryan
Author Profile Icon Kedeisha Bryan
Kedeisha Bryan
Taamir Ransome Taamir Ransome
Author Profile Icon Taamir Ransome
Taamir Ransome
Arrow right icon
View More author details
Toc

Table of Contents (23) Chapters Close

Preface 1. Part 1: Landing Your First Data Engineering Job
2. Chapter 1: The Roles and Responsibilities of a Data Engineer FREE CHAPTER 3. Chapter 2: Must-Have Data Engineering Portfolio Projects 4. Chapter 3: Building Your Data Engineering Brand on LinkedIn 5. Chapter 4: Preparing for Behavioral Interviews 6. Part 2: Essentials for Data Engineers Part I
7. Chapter 5: Essential Python for Data Engineers 8. Chapter 6: Unit Testing 9. Chapter 7: Database Fundamentals 10. Chapter 8: Essential SQL for Data Engineers 11. Part 3: Essentials for Data Engineers Part II
12. Chapter 9: Database Design and Optimization 13. Chapter 10: Data Processing and ETL 14. Chapter 11: Data Pipeline Design for Data Engineers 15. Chapter 12: Data Warehouses and Data Lakes 16. Part 4: Essentials for Data Engineers Part III
17. Chapter 13: Essential Tools You Should Know 18. Chapter 14: Continuous Integration/Continuous Development (CI/CD) for Data Engineers 19. Chapter 15: Data Security and Privacy 20. Chapter 16: Additional Interview Questions
21. Index 22. Other Books You May Enjoy

Summary

This chapter covered data warehouses and data lakes, essential tools for data engineers. We studied these systems’ architecture, operation, and best practices. We started with data warehouses and how they use data marts and schemas to analyze structured transactional data. We examined their layered architecture and the ETL process, which underpins data warehouse operations.

Data lake architecture—from data ingestion and storage to data processing and cataloging—was our next topic. We explained data lake zones and their importance to organization and functionality. The difference between a well-managed data lake and a data swamp and the importance of data governance and security was stressed.

The next chapter will explore data engineering’s exciting CI/CD world. Prepare to learn about data engineering software development principles and practices that ensure efficiency and reliability. Let’s keep learning data engineering skills.

...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime