Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
The Regularization Cookbook

You're reading from   The Regularization Cookbook Explore practical recipes to improve the functionality of your ML models

Arrow left icon
Product type Paperback
Published in Jul 2023
Publisher Packt
ISBN-13 9781837634088
Length 424 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vincent Vandenbussche Vincent Vandenbussche
Author Profile Icon Vincent Vandenbussche
Vincent Vandenbussche
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: An Overview of Regularization 2. Chapter 2: Machine Learning Refresher FREE CHAPTER 3. Chapter 3: Regularization with Linear Models 4. Chapter 4: Regularization with Tree-Based Models 5. Chapter 5: Regularization with Data 6. Chapter 6: Deep Learning Reminders 7. Chapter 7: Deep Learning Regularization 8. Chapter 8: Regularization with Recurrent Neural Networks 9. Chapter 9: Advanced Regularization in Natural Language Processing 10. Chapter 10: Regularization in Computer Vision 11. Chapter 11: Regularization in Computer Vision – Synthetic Image Generation 12. Index 13. Other Books You May Enjoy

Regularizing with lasso regression

Lasso regression stands for Least Absolute Shrinkage and Selection Operator. This is a regularization method that is conceptually very close to ridge regression. In some cases, lasso regression outperforms ridge regression, which is why it’s useful to know what it does and how to use it. In this recipe, we will briefly explain what lasso regression is and then train a model using scikit-learn on the same California housing dataset.

Getting ready

Instead of using the L2-norm, lasso uses the L1-norm, so that the loss is the following:

While ridge regression tends to decrease weights close to zero quite smoothly, lasso is more drastic. Lasso, having a much steeper loss, tends to set weights to zero quite quickly.

Just like the ridge regression recipe, we’ll use the same libraries and assume they are installed: numpy, sklearn, and matplotlib. Also, we’ll assume the data is already downloaded and...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image