As of today, policy gradient is one of the most used RL algorithms. Research has shown that when properly tuned, they perform better than DQNs and, at the same time, do not suffer from excessive memory and computation disadvantages. Unlike Q learning, policy gradients use a parameterized policy that can select actions without consulting a value function. In policy gradients, we talk about a performance measure η(θp); the goal is to maximize the performance and hence the weights of the NN are updated according to the gradient ascent algorithm. However, TensorFlow does not have a maximum optimizer, thus we use the negative of the gradient of performance, -∇η(θp), and minimize it.
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine