Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Solidity Programming Essentials

You're reading from   Solidity Programming Essentials A beginner's guide to build smart contracts for Ethereum and blockchain

Arrow left icon
Product type Paperback
Published in Apr 2018
Publisher Packt
ISBN-13 9781788831383
Length 222 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Ritesh Modi Ritesh Modi
Author Profile Icon Ritesh Modi
Ritesh Modi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to Blockchain, Ethereum, and Smart Contracts FREE CHAPTER 2. Installing Ethereum and Solidity 3. Introducing Solidity 4. Global Variables and Functions 5. Expressions and Control Structures 6. Writing Smart Contracts 7. Functions, Modifiers, and Fallbacks 8. Exceptions, Events, and Logging 9. Truffle Basics and Unit Testing 10. Debugging Contracts 11. Other Books You May Enjoy

Data types in Solidity


Solidity data types can broadly be classified in the following two types:

  • Value types 
  • Reference types

These two types in Solidity differ based on the way they are assigned to a variable and stored in EVM. Assigning a variable to another variable can be done by creating a new copy or just by coping the reference. Value types maintains independent copies of variables and changing the value in one variable does not effect value in another variable. However, changing values in reference type variables ensures that anybody referring to that variables gets updates value.

Value types

A type is referred as value type if it holds the data (value) directly within the memory owned by it. These types have values stored with them, instead of elsewhere. The same is illustrated in following diagram. In this example, a variable of data type unsigned integer (uint) is declared with 13 as its data(value). The variable a has memory space allocated by EVM which is referred as 0x123 and this...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image