Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Feature Engineering Cookbook

You're reading from   Python Feature Engineering Cookbook Over 70 recipes for creating, engineering, and transforming features to build machine learning models

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781789806311
Length 372 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Soledad Galli Soledad Galli
Author Profile Icon Soledad Galli
Soledad Galli
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Foreseeing Variable Problems When Building ML Models 2. Imputing Missing Data FREE CHAPTER 3. Encoding Categorical Variables 4. Transforming Numerical Variables 5. Performing Variable Discretization 6. Working with Outliers 7. Deriving Features from Dates and Time Variables 8. Performing Feature Scaling 9. Applying Mathematical Computations to Features 10. Creating Features with Transactional and Time Series Data 11. Extracting Features from Text Variables 12. Other Books You May Enjoy

Implementing mode or frequent category imputation

Mode imputation consists of replacing missing values with the mode. We normally use this procedure in categorical variables, hence the frequent category imputation name. Frequent categories are estimated using the train set and then used to impute values in train, test, and future datasets. Thus, we need to learn and store these parameters, which we can do using scikit-learn and Feature-engine's transformers; in the following recipe, we will learn how to do so.

If the percentage of missing values is high, frequent category imputation may distort the original distribution of categories.

How to do it...

To begin, let's make a few imports and prepare the data:

  1. Let&apos...
You have been reading a chapter from
Python Feature Engineering Cookbook
Published in: Jan 2020
Publisher: Packt
ISBN-13: 9781789806311
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime