Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Data Analysis Cookbook

You're reading from   Practical Data Analysis Cookbook Over 60 practical recipes on data exploration and analysis

Arrow left icon
Product type Paperback
Published in Apr 2016
Publisher
ISBN-13 9781783551668
Length 384 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Preparing the Data FREE CHAPTER 2. Exploring the Data 3. Classification Techniques 4. Clustering Techniques 5. Reducing Dimensions 6. Regression Methods 7. Time Series Techniques 8. Graphs 9. Natural Language Processing 10. Discrete Choice Models 11. Simulations Index

Managing sophisticated substitution patterns with the Mixed Logit model

The Mixed Logit model, in contrast to all the previously presented models, allows some of the coefficients to be random following a normal distribution, that is, having a mean and standard deviation. This, in effect, eliminates the dependency on the IIA assumption and allows the flexible modeling of substitution patterns. However, this comes at the cost of computation time.

Getting ready

To execute this recipe, you need a working Python Biogeme package installed on your machine. No other prerequisites are required.

How to do it…

As we have already established that the MNL model estimated using our dataset does not violate the IIA property, we will only present the mechanics of estimating the Mixed Logit model (the MixedLogit/dcm_mixed.py file):

C_price = Beta('C_price',0,-10,10,0,'C price' )
V_price = Beta('V_price',0,-10,10,0,'V price' )
Y_price = Beta('Y_price',0...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image