Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Big Data Analytics

You're reading from   Practical Big Data Analytics Hands-on techniques to implement enterprise analytics and machine learning using Hadoop, Spark, NoSQL and R

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781783554393
Length 412 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Nataraj Dasgupta Nataraj Dasgupta
Author Profile Icon Nataraj Dasgupta
Nataraj Dasgupta
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Too Big or Not Too Big FREE CHAPTER 2. Big Data Mining for the Masses 3. The Analytics Toolkit 4. Big Data With Hadoop 5. Big Data Mining with NoSQL 6. Spark for Big Data Analytics 7. An Introduction to Machine Learning Concepts 8. Machine Learning Deep Dive 9. Enterprise Data Science 10. Closing Thoughts on Big Data 11. External Data Science Resources 12. Other Books You May Enjoy

The bias, variance, and regularization properties


Bias, variance, and the closely related topic of regularization hold very special and fundamental positions in the field of machine learning.

Bias happens when a machine learning model is too 'simple', leading to results that are consistently off from the actual values.

Variance happens when a model is too 'complex', leading to results that are very accurate on test datasets, but do not perform well on unseen/new datasets.

Once users become familiar with the process of creating machine learning models, it would seem that the process is quite simplistic - get the data, create a training set and a test set, create a model, apply the model on the test dataset, and the exercise is complete. Creating models is easy; creating a good model is a much more challenging topic. But how can one test the quality of a model? And, perhaps more importantly, how does one go about building a 'good' model?

The answer lies in a term called regularization. It's arguably...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime