Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
OpenCV By Example

You're reading from   OpenCV By Example Enhance your understanding of Computer Vision and image processing by developing real-world projects in OpenCV 3

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher Packt
ISBN-13 9781785280948
Length 296 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Vinícius G. Mendonça Vinícius G. Mendonça
Author Profile Icon Vinícius G. Mendonça
Vinícius G. Mendonça
David Millán Escrivá David Millán Escrivá
Author Profile Icon David Millán Escrivá
David Millán Escrivá
Prateek Joshi Prateek Joshi
Author Profile Icon Prateek Joshi
Prateek Joshi
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with OpenCV FREE CHAPTER 2. An Introduction to the Basics of OpenCV 3. Learning the Graphical User Interface and Basic Filtering 4. Delving into Histograms and Filters 5. Automated Optical Inspection, Object Segmentation, and Detection 6. Learning Object Classification 7. Detecting Face Parts and Overlaying Masks 8. Video Surveillance, Background Modeling, and Morphological Operations 9. Learning Object Tracking 10. Developing Segmentation Algorithms for Text Recognition 11. Text Recognition with Tesseract Index

Computer Vision and the machine learning workflow


The Computer Vision applications with machine learning have a common basic structure. This structure is divided into different steps that are repeated in almost all Computer Vision applications, and some others are omitted. In the following diagram, we show you the different steps involved:

Almost any Computer Vision application starts with a preprocessing stage that is applied to the input image. Preprocessing involves light removal conditions and noise, thresholding, blur, and so on.

After we apply all the preprocessing steps required to the input image, the second step is segmentation. In the segmentation step, we need to extract the regions of interest of an image and isolate each one as a unique object of interest. For example, in a face detection system, we need to separate the faces from the rest of the parts in the scene.

After getting the objects inside the image, we continue with the next step. We need to extract all the features of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime