Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Modular Programming with Python
Modular Programming with Python

Modular Programming with Python: Introducing modular techniques for building sophisticated programs using Python

eBook
€8.99 €26.99
Paperback
€32.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Modular Programming with Python

Chapter 1. Introducing Modular Programming

Modular programming is an essential tool for the modern developer. Gone are the days when you could just throw something together and hope that it works. To build robust systems that last, you need to understand how to organize your programs so that they can grow and evolve over time. Spaghetti coding is not an option. Modular programming techniques, and in particular the use of Python modules and packages, will give you the tools you need to succeed as a professional in the fast changing programming landscape.

In this chapter, we will:

  • Look at the fundamental aspects of modular programming
  • See how Python modules and packages can be used to organize your code
  • Discover what happens when modular programming techniques are not used
  • Learn how modular programming helps you stay on top of the development process
  • Take a look at the Python standard library as an example of modular programming
  • Create a simple program, built using modular techniques, to see how it works in practice

Let's get started by learning about modules and how they work.

Introducing Python modules

For most beginner programmers, their first Python program is some version of the famous Hello World program. This program would look something like this:

print("Hello World!")

This one-line program would be saved in a file on disk, typically named something like hello.py, and it would be executed by typing the following command into a terminal or command-line window:

python hello.py

The Python interpreter would then dutifully print out the message you have asked it to:

Hello World!

This hello.py file is called a Python source file. When you are first starting out, putting all your program code into a single source file is a great way of organizing your program. You can define functions and classes, and put instructions at the bottom which start your program when you run it using the Python interpreter. Storing your program code inside a Python source file saves you from having to retype it each time you want to tell the Python interpreter what to do.

As your programs get more complicated, however, you'll find that it becomes harder and harder to keep track of all the various functions and classes that you define. You'll forget where you put a particular piece of code and find it increasingly difficult to remember how all the various pieces fit together.

Modular programming is a way of organizing programs as they become more complicated. You can create a Python module, a source file that contains Python source code to do something useful, and then import this module into your program so that you can use it. For example, your program might need to keep track of various statistics about events that take place while the program is running. At the end, you might want to know how many events of each type have occurred. To achieve this, you might create a Python source file named stats.py which contains the following Python code:

def init():
    global _stats
    _stats = {}

def event_occurred(event):
    global _stats
    try:
        _stats[event] = _stats[event] + 1
    except KeyError:
        _stats[event] = 1

def get_stats():
    global _stats
    return sorted(_stats.items())

The stats.py Python source file defines a module named stats—as you can see, the name of the module is simply the name of the source file without the .py suffix. Your main program can make use of this module by importing it and then calling the various functions that you have defined as they are needed. The following frivolous example shows how you might use the stats module to collect and display statistics about events:

import stats

stats.init()
stats.event_occurred("meal_eaten")
stats.event_occurred("snack_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("snack_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("diet_started")
stats.event_occurred("meal_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("meal_eaten")
stats.event_occurred("diet_abandoned")
stats.event_occurred("snack_eaten")

for event,num_times in stats.get_stats():
    print("{} occurred {} times".format(event, num_times))

We're not interested in recording meals and snacks, of course—this is just an example—but the important thing to notice here is how the stats module gets imported, and then how the various functions you defined within the stats.py file get used. For example, consider the following line of code:

stats.event_occurred("snack_eaten")

Because the event_occurred() function is defined within the stats module, you need to include the name of the module whenever you refer to this function.

Note

There are ways in which you can import modules so you don't need to include the name of the module each time. We'll take a look at this in Chapter 3, Using Modules and Packages, when we look at namespaces and how the import command works in more detail.

As you can see, the import statement is used to load a module, and any time you see the module name followed by a period, you can tell that the program is referring to something (for example, a function or class) that is defined within that module.

Introducing Python packages

In the same way that Python modules allow you to organize your functions and classes into separate Python source files, Python packages allow you to group multiple modules together.

A Python package is a directory with certain characteristics. For example, consider the following directory of Python source files:

Introducing Python packages

This Python package, called animals, contains five Python modules: cat, cow, dog, horse, and sheep. There is also a special file with the rather unusual name __init__.py. This file is called a package initialization file; the presence of this file tells the Python system that this directory contains a package. The package initialization file can also be used to initialize the package (hence the name) and can also be used to make importing the package easier.

Note

Starting with Python version 3.3, packages don't always need to include an initialization file. However, packages without an initialization file (called namespace packages) are still quite uncommon and are only used in very specific circumstances. To keep things simple, we will be using regular packages (with the __init__.py file) throughout this book.

Just like we used the module name when calling a function within a module, we use the package name when referring to a module within a package. For example, consider the following code:

import animals.cow
animals.cow.speak()

In this example, the speak() function is defined within the cow.py module, which itself is part of the animals package.

Packages are a great way of organizing more complicated Python programs. You can use them to group related modules together, and you can even define packages inside packages (called nested packages) to keep your program super-organized.

Note that the import statement (and the related from...import statement) can be used in a variety of ways to load packages and modules into your program. We have only scratched the surface here, showing you what modules and packages look like in Python so that you can recognize them when you see them in a program. We will be looking at the way modules and packages can be defined and imported in much more depth in Chapter 3, Using Modules and Packages.

Tip

Downloading the example code

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Modular-Programming-with-Python. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Using modules and packages to organize a program

Modules and packages aren't just there to spread your Python code across multiple source files and directories—they allow you to organize your code to reflect the logical structure of what your program is trying to do. For example, imagine that you have been asked to create a web application to store and report on university examination results. Thinking about the business requirements that you have been given, you come up with the following overall structure for your application:

Using modules and packages to organize a program

The program is broken into two main parts: a web interface, which interacts with the user (and with other computer programs via an API), and a backend, which handles the internal logic of storing information in a database, generating reports, and e-mailing results to students. As you can see, the web interface itself has been broken down into four parts:

  • A user authentication section, which handles user sign-up, sign-in, and sign-out
  • A web interface to view and enter exam results
  • A web interface to generate reports
  • An API, which allows other systems to retrieve exam results on request

As you consider each logical component of your application (that is, each of the boxes in the preceding illustration), you are also starting to think about the functionality that each component will provide. As you do this, you are already thinking in modular terms. Indeed, each of the logical components of your application can be directly implemented as a Python module or package. For example, you might choose to break your program into two main packages named web and backend, where:

  • The web package has modules named authentication, results, reports, and api
  • The backend package has modules named database, reportgenerator, and emailer

As you can see, each shaded box in the preceding illustration becomes a Python module, and each of the groupings of boxes becomes a Python package.

Once you have decided on the collection of packages and modules that you want to define, you can start to implement each component by writing the appropriate set of functions within each module. For example, the backend.database module might have a function named get_students_results(), which returns a single student's exam results for a given subject and year.

Note

In a real web application, your modular structure may actually be somewhat different. This is because you typically create a web application using a web application framework such as Django, which imposes its own structure on your program. However, in this example we are keeping the modular structure as simple as possible to show how business functionality translates directly into packages and modules.

Obviously, this example is fictitious, but it shows how you can think about a complex program in modular terms, breaking it down into individual components and then using Python modules and packages to implement each of these components in turn.

Why use modular programming techniques?

One of the great things about using modular design techniques, as opposed to just leaping in and writing code, is that they force you to think about the way your program should be structured and let you define a structure that will grow as your program evolves. Your program will be robust, easy to understand, easy to restructure as the scope of the program expands, and easy for others to work with too.

Woodworkers have a motto that equally applies to modular programming: there's a place for everything, and everything should be in its place. This is one of the hallmarks of high quality code, just as it's a hallmark of a well-organized woodworker's workshop.

To see why modular programming is such an important skill, imagine what would happen if you didn't apply modular techniques when writing a program. If you put all your Python code into a single source file, didn't try to logically arrange your functions and classes, and just randomly added new code to the end of the file, you would end up with a terrible mess of incomprehensible code. The following is an example of a program written without any sort of modular organization:

import configparser

def load_config():
    config = configparser.ConfigParser()
    config.read("config.ini")
    return config['config']

def get_data_from_user():
    config = load_config()
    data = []
    for n in range(config.getint('num_data_points')):
        value = input("Data point {}: ".format(n+1))
        data.append(value)
    return data

def print_results(results):
    for value,num_times in results:
        print("{} = {}".format(value, num_times))

def analyze_data():
    data = get_data_from_user()
    results = {}
    config = load_config()
    for value in data:
        if config.getboolean('allow_duplicates'):
            try:
                results[value] = results[value] + 1
            except KeyError:
                results[value] = 1
        else:
            results[value] = 1
    return results

def sort_results(results):
    sorted_results = []
    for value in results.keys():
        sorted_results.append((value, results[value]))
    sorted_results.sort()
    return sorted_results

if __name__ == "__main__":
    results = analyze_data()
    sorted_results = sort_results(results)
    print_results(sorted_results)

This program is intended to prompt the user for a number of data points and count how often each data point occurs. It does work, and the function and variable names do help to explain what each part of the program does—but it is still a mess. Just looking at the source code, it is hard to figure out what this program does. Functions were just added to the end of the file as the author decided to implement them, and even for a relatively small program, it is difficult to keep track of the various pieces. Imagine trying to debug or maintain a program like this if it was 10,000 lines long!

This program is an example of spaghetti coding—programming where everything is jumbled together and there is no overall organization to the source code. Unfortunately, spaghetti coding is often combined with other programming habits that make a program even harder to understand. Some of the more common problems include:

  • Poorly chosen variable and function names that don't hint at what each variable or function is for. A typical example of this is a program that uses variable names such as a, b, c, and d.
  • A complete lack of any documentation explaining what the code is supposed to do.
  • Functions that have unexpected side effects. For example, imagine if the print_results() function in our example program modified the results array as it was being printed. If you wanted to print the results twice or use the results after they had been printed, your program would fail in a most mysterious way.

While modular programming won't cure all these ills, the fact that it forces you to think about the logical organization of your program will help you to avoid them. Organizing your code into logical pieces will help you structure your program so that you know where each part belongs. Thinking about the packages and modules, and what each module contains, will encourage you to choose clear and appropriate names for the various parts of your program. Using modules and packages also makes it natural to include docstrings to explain the functionality of each part of your program as you go along. Finally, using a logical structure encourages each part of your program to perform one particular task, reducing the likelihood of side effects creeping into your code.

Of course, like any programming technique, modular programming can be abused, but if it is used well it will vastly improve the quality of the programs you write.

Programming as a process

Imagine that you are writing a program to calculate the price of overseas purchases. Your company is based in England, and you need to calculate the local price of something purchased in US dollars. Someone else has already written a Python module which downloads the exchange rate, so your program starts out looking something like the following:

def calc_local_price(us_dollar_amount):
    exchange_rate = get_exchange_rate("USD", "EUR")
    local_amount = us_dollar_amount * exchange_rate
    return local_amount

So far so good. Your program is included in your company's online ordering system and the code goes into production. However, two months later, your company starts ordering products not just from the US, but from China, Germany, and Australia as well. You scramble to update your program to support these alternative currencies, and write something like the following:

def calc_local_price(foreign_amount, from_country):
    if from_country == "United States":
        exchange_rate = get_exchange_rate("USD", "EUR")
    elif from_country == "China":
        exchange_rate = get_exchange_rate("CHN", "EUR")
    elif from_country == "Germany":
        exchange_rate = get_exchange_rate("EUR", "EUR")
    elif from_country = "Australia":
        exchange_rate = get_exchange_rate("AUS", "EUR")
    else:
        raise RuntimeError("Unsupported country: " + from_country)
    local_amount = us_dollar_amount * exchange_rate
    return local_amount

Once again, this program goes into production. Six months later, another 14 countries are added, and the project manager also decides to add a new feature, where the user can see how the price of a product has changed over time. As the programmer responsible for this code, you now have to add support for those 14 countries, and also add support for historical exchange rates going back in time.

This is a contrived example, of course, but it does show how programs typically evolve. Program code isn't something you write once and then leave forever. Your program is constantly changing and evolving in response to new requirements, newly discovered bugs, and unexpected consequences. Sometimes, a change that seems simple can be anything but. For example, consider the poor programmer who wrote the get_exchange_rate() function in our previous example. This function now has to support not only the current exchange rate for any given pair of currencies, it also has to return historical exchange rates going back to any desired point in time. If this function is obtaining its information from a source that doesn't support historical exchange rates, then the whole function may need to be rewritten from scratch to support an alternative data source.

Sometimes, programmers and IT managers try to suppress change, for example by writing detailed specifications and then implementing one part of the program at a time (the so-called waterfall method of programming). But change is an integral part of programming, and trying to suppress it is like trying to stop the wind from blowing—it's much better to just accept that your program will change, and learn how to manage the process as well as you can.

Modular techniques are an excellent way of managing change in your programs. For example, as your program grows and evolves, you may find that a particular change requires the addition of a new module to your program:

Programming as a process

You can then import and use that module in the other parts of your program that need to use this new functionality.

Alternatively, you might find that a new feature only requires you to change the contents of a module:

Programming as a process

This is one of the major benefits of modular programming—since the details of how a particular feature is implemented is inside a module, you can often change the internals of a module without affecting any other parts of your program. The rest of your program continues to import and use the module as it did before—only the internal implementation of the module has changed.

Finally, you might find that you need to refactor your program. This is where you have to change the modular organization of your code to improve the way the program works:

Programming as a process

Refactoring may involve moving code between modules as well as creating new modules, removing old ones, and changing the way modules work. In essence, refactoring is the process of rethinking the program so that it works better.

In all of these changes, the use of modules and packages help you to manage the changes you make. Because the various modules and packages each perform a well-defined task, you know exactly which parts of your program need to be changed, and you can limit the effects of your changes to only the affected modules and the parts of the system that use them.

Modular programming won't make change go away, but it will help you to deal with change—and the ongoing process of programming—in the best possible way.

The Python Standard Library

One of the buzzwords used to describe Python is that it is a batteries included language, that is, it comes with a rich collection of built-in modules and packages called the Python Standard Library. If you've written any non-trivial Python program, you've almost certainly used modules from the Python Standard Library to do so. To get an idea of how vast the Python Standard Library is, here are a few example modules from this library:

Module

Description

datetime

Defines classes to store and perform calculations using date and time values

tempfile

Defines a range of functions to work with temporary files and directories

csv

Supports reading and writing of CSV format files

hashlib

Implements cryptographically secure hashes

logging

Allows you to write log messages and manage log files

threading

Supports multi-threaded programming

html

A collection of modules (that is, a package) used to parse and generate HTML documents

unittest

A framework for creating and running unit tests

urllib

A collection of modules to read data from URLs

These are just a few of the over 300 modules available in the Python Standard Library. As you can see, there is a vast range of functionality provided, and all of this is built in to every Python distribution.

Because of the huge range of functionality provided, the Python Standard Library is an excellent example of modular programming. For example, the math standard library module provides a range of mathematical functions that make it easier to work with integer and floating-point numbers. If you look through the documentation for this module (http://docs.python.org/3/library/math.html), you will find a large collection of functions and constants, all defined within the math module, that perform almost any mathematical operation you could imagine. In this example, the various functions and constants are all defined within a single module, making it easy to refer to them when you need to.

In contrast, the xmlrpc package allows you to make and respond to remote procedure calls that use the XML protocol to send and receive data. The xmlrpc package is made up of two modules: xmlrpc.server and xmlrpc.client, where the server module allows you to create an XML-RPC server, and the client module includes code to access and use an XML-RPC server. This is an example of where a hierarchy of modules is used to logically group related functionality together (in this case, within the xmlrpc package), while using sub-modules to separate out the particular parts of the package.

If you haven't already done so, it is worth spending some time to review the documentation for the Python Standard Library. This can be found at https://docs.python.org/3/library/. It is worth studying this documentation to see how Python has organized such a vast collection of features into modules and packages.

The Python Standard Library is not perfect, but it has been improved over time, and the library as it is today makes a great example of modular programming techniques applied to a comprehensive library, covering a wide range of features and functions.

Creating your first module

Now that we've seen what modules are and how they can be used, let's implement our first real Python module. While this module is simple, you may find it a useful addition to the programs you write.

Caching

In computer programming, a cache is a way of storing previously calculated results so that they can be retrieved more quickly. For example, imagine that your program had to calculate shipping costs based on three parameters:

  • The weight of the ordered item
  • The dimensions of the ordered item
  • The customer's location

Calculating the shipping cost based on the customer's location might be quite involved. For example, you may have a fixed charge for deliveries within your city but charge a premium for out-of-town orders based on how far away the customer is. You may even need to send a query to a freight company's API to see how much it will charge to ship the given item.

Since the process of calculating the shipping cost can be quite complex and time consuming, it makes sense to use a cache to store the previously calculated results. This allows you to use the previously calculated results rather than having to recalculate the shipping cost each time. To do this, you would need to structure your calc_shipping_cost() function to look something like the following:

def calc_shipping_cost(params):
    if params in cache:
        shipping_cost = cache[params]
    else:
        ...calculate the shipping cost.
        cache[params] = shipping_cost
    return shipping_cost

As you can see, we take the supplied parameters (in this case, the weight, dimensions, and the customer's location) and check whether there is already an entry in the cache for those parameters. If so, we retrieve the previously-calculated shipping cost from the cache. Otherwise, we go through the possibly time-consuming process of calculating the shipping cost, storing this in the cache using the supplied parameters, and then returning the shipping cost back to the caller.

Notice how the cache variable in the preceding pseudo code looks very much like a Python dictionary—you can store entries in the dictionary based on a given key and then retrieve the entry using this key. There is, however, a crucial difference between a dictionary and a cache: a cache typically has a limit on the number of entries that it can contain, while the dictionary has no such limit. This means that a dictionary will continue to grow forever, possibly taking up all the computer's memory if the program runs for a long time, while a cache will never take too much memory, as the number of entries is limited.

Once the cache reaches its maximum size, an existing entry has to be removed each time a new entry is added so that the cache doesn't continue to grow:

Caching

While there are various ways of choosing the entry to remove, the most common way is to remove the least recently used entry, that is, the entry that hasn't been used for the longest period of time.

Caches are very commonly used in computer programs. In fact, even if you haven't yet used a cache in the programs you write, you've almost certainly encountered them before. Has someone ever suggested that you clear your browser's cache to solve a problem with your web browser? Yes, web browsers use a cache to hold previously downloaded images and web pages so that they don't have to be retrieved again, and clearing the contents of the browser cache is a common way of fixing a misbehaving web browser.

Writing a cache module

Let's now write our own Python module to implement a cache. Before we write it, let's think about the functionality that our cache module will require:

  • We're going to limit the size of our cache to 100 entries.
  • We will need an init() function to initialize the cache.
  • We will have a set(key, value) function to store an entry in the cache.
  • A get(key) function will retrieve an entry from the cache. If there is no entry for that key, this function should return None.
  • We'll also need a contains(key) function to check whether a given entry is in the cache.
  • Finally, we'll implement a size() function which returns the number of entries in the cache.

Note

We are deliberately keeping the implementation of this module quite simple. A real cache would make use of a Cache class to allow you to use multiple caches at once. It would also allow the size of the cache to be configured as necessary. To keep things simple, however, we will implement these functions directly within a module, as we want to concentrate on modular programming rather than combining it with object-oriented programming and other techniques.

Go ahead and create a new Python source file named cache.py. This file will hold the Python source code for our new module. At the top of this module, enter the following Python code:

import datetime

MAX_CACHE_SIZE = 100

We will be using the datetime Standard Library module to calculate the least recently used entry in the cache. The second statement, defining MAX_CACHE_SIZE, sets the maximum size for our cache.

Tip

Note that we are following the standard Python convention of defining constants using uppercase letters. This makes them easier to see in your source code.

We now want to implement the init() function for our cache. To do this, add the following to the end of your module:

def init():
    global _cache
    _cache = {} # Maps key to (datetime, value) tuple.

As you can see, we have created a new function named init(). The first statement in this function, global _cache, defines a new variable named _cache. The global statement makes this variable available as a module-level global variable, that is, this variable can be shared by all parts of the cache.py module.

Notice the underscore character at the start of the variable name. In Python, a leading underscore is a convention indicating that a name is private. In other words, the _cache global is intended to be used as an internal part of the cache.py module—the underscore tells you that you shouldn't need to use this variable outside of the cache.py module itself.

The second statement in the init() function sets the _cache global to an empty dictionary. Notice that we've added a comment explaining how the dictionary will be used; it's good practice to add notes like this to your code so others (and you, when you look at this code after a long time working on something else) can easily see what this variable is used for.

In summary, calling the init() function has the effect of creating a private _cache variable within the module and setting it to an empty dictionary. Let's now write the set() function, which will use this variable to store an entry in the cache.

Add the following to the end of your module:

def set(key, value):
    global _cache
    if key not in _cache and len(_cache) >= MAX_CACHE_SIZE:
        _remove_oldest_entry()
    _cache[key] = [datetime.datetime.now(), value]

Once again, the set() function starts with a global _cache statement. This makes the _cache module-level global variable available for the function to use.

The if statement checks to see whether the cache is going to exceed the maximum allowed size. If so, we call a new function, named _remove_oldest_entry(), to remove the oldest entry from the cache. Notice how this function name also starts with an underscore—once again, this indicates that this function is private and should only be used by code within the module itself.

Finally, we store the entry in the _cache dictionary. Notice that we store the current date and time as well as the value in the cache; this will let us know when the cache entry was last used, which is important when we have to remove the oldest entry.

Let's now implement the get() function. Add the following to the end of your module:

def get(key):
    global _cache
    if key in _cache:
        _cache[key][0] = datetime.datetime.now()
        return _cache[key][1]
    else:
        return None

You should be able to figure out what this code does. The only interesting part to note is that we update the date and time for the cache entry before returning the associated value. This lets us know when the cache entry was last used.

With these functions implemented, the remaining two functions should also be easy to understand. Add the following to the end of your module:

def contains(key):
    global _cache
    return key in _cache

def size():
    global _cache
    return len(_cache)

There shouldn't be any surprises here.

There's only one more function left to implement: our private _remove_oldest_entry() function. Add the following to the end of your module:

def _remove_oldest_entry():
    global _cache
    oldest = None
    for key in _cache.keys():
        if oldest == None:
            oldest = key
        elif _cache[key][0] < _cache[oldest][0]:
            oldest = key
    if oldest != None:
        del _cache[oldest]

This completes the implementation of our cache.py module itself, with the five main functions we described earlier, as well as one private function and one private global variable which are used internally to help implement our public functions.

Using the cache

Let's now write a simple test program to use this cache module and verify that it's working properly. Create a new Python source file, which we'll call test_cache.py, and add the following to this file:

import random
import string
import cache

def random_string(length):
    s = ''
    for i in range(length):
        s = s + random.choice(string.ascii_letters)
    return s

cache.init()

for n in range(1000):
    while True:
        key = random_string(20)
        if cache.contains(key):
            continue
        else:
            break
    value = random_string(20)
    cache.set(key, value)
    print("After {} iterations, cache has {} entries".format(n+1, cache.size()))

This program starts by importing three modules: two from the Python Standard Library, and the cache module we have just written. We then define a utility function named random_string(), which generates a string of random letters of a given length. After this, we initialize the cache by calling cache.init() and then generate 1,000 random entries to add to the cache. After adding each cache entry, we print out the number of entries we have added as well as the current cache size.

If you run this program, you can see that it's working as expected:

$ python test_cache.py
After 1 iterations, cache has 1 entries
After 2 iterations, cache has 2 entries
After 3 iterations, cache has 3 entries
...
After 98 iterations, cache has 98 entries
After 99 iterations, cache has 99 entries
After 100 iterations, cache has
 100 entries
After 101 iterations, cache has 100 entries
After 102 iterations, cache has 100 entries
...
After 998 iterations, cache has 100 entries
After 999 iterations, cache has 100 entries
After 1000 iterations, cache has 100 entries

The cache continues to grow until it reaches 100 entries, at which point the oldest entry is removed to make room for a new one. This ensures that the cache stays the same size, no matter how many new entries are added.

While there is a lot more we could do with our cache.py module, this is enough to demonstrate how to create a useful Python module and then use it within another program. Of course, you aren't just limited to importing modules within a main program—modules can import other modules as well.

Summary

In this chapter, we introduced the concept of Python modules and saw how Python modules are simply Python source files, which are imported and used by another source file. We then took a look at Python packages and saw that these are collections of modules identified by a package initialization file named __init__.py.

We explored how modules and packages can be used to organize your program's source code and why the use of these modular techniques is so important for the development of large systems. We also explored what spaghetti code looks like and discovered some of the other pitfalls that can occur if you don't modularize your programs.

Next, we looked at programming as a process of constant change and evolution and how modular programming can help deal with a changing codebase in the best possible way. We then learned that the Python Standard Library is an excellent example of a large collection of modules and packages, and finished by creating our own simple Python module that demonstrates effective modular programming techniques. In implementing this module, we learned how a module can use leading underscores in variable and function names to mark them as private to the module, while making the remaining functions and other definitions available for other parts of the system to use.

In the next chapter, we will apply modular techniques to the development of a more sophisticated program consisting of several modules working together to solve a more complex programming problem.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • The book would help you develop succinct, expressive programs using modular deign
  • The book would explain best practices and common idioms through carefully explained and structured examples
  • It will have broad appeal as far as target audience is concerned and there would be take away for all beginners to Python

Description

Python has evolved over the years and has become the primary choice of developers in various fields. The purpose of this book is to help readers develop readable, reliable, and maintainable programs in Python. Starting with an introduction to the concept of modules and packages, this book shows how you can use these building blocks to organize a complex program into logical parts and make sure those parts are working correctly together. Using clearly written, real-world examples, this book demonstrates how you can use modular techniques to build better programs. A number of common modular programming patterns are covered, including divide-and-conquer, abstraction, encapsulation, wrappers and extensibility. You will also learn how to test your modules and packages, how to prepare your code for sharing with other people, and how to publish your modules and packages on GitHub and the Python Package Index so that other people can use them. Finally, you will learn how to use modular design techniques to be a more effective programmer.

Who is this book for?

This book is intended for beginner to intermediate level Python programmers who wish to learn how to use modules and packages within their programs. While readers must understand the basics of Python programming, no knowledge of modular programming techniques is required.

What you will learn

  • Learn how to use modules and packages to organize your Python code
  • Understand how to use the import statement to load modules and packages into your program
  • Use common module patterns such as abstraction and encapsulation to write better programs
  • Discover how to create self-testing Python packages
  • Create reusable modules that other programmers can use
  • Learn how to use GitHub and the Python Package Index to share your code with other people
  • Make use of modules and packages that others have written
  • Use modular techniques to build robust systems that can handle complexity and changing requirements over time
Estimated delivery fee Deliver to Slovenia

Premium delivery 7 - 10 business days

€25.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : May 26, 2016
Length: 246 pages
Edition : 1st
Language : English
ISBN-13 : 9781785884481
Category :
Languages :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Slovenia

Premium delivery 7 - 10 business days

€25.95
(Includes tracking information)

Product Details

Publication date : May 26, 2016
Length: 246 pages
Edition : 1st
Language : English
ISBN-13 : 9781785884481
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 111.97
Software Architecture with Python
€41.99
Modular Programming with Python
€32.99
Expert Python Programming
€36.99
Total 111.97 Stars icon
Banner background image

Table of Contents

10 Chapters
1. Introducing Modular Programming Chevron down icon Chevron up icon
2. Writing Your First Modular Program Chevron down icon Chevron up icon
3. Using Modules and Packages Chevron down icon Chevron up icon
4. Using Modules for Real-World Programming Chevron down icon Chevron up icon
5. Working with Module Patterns Chevron down icon Chevron up icon
6. Creating Reusable Modules Chevron down icon Chevron up icon
7. Advanced Module Techniques Chevron down icon Chevron up icon
8. Testing and Deploying Modules Chevron down icon Chevron up icon
9. Modular Programming as a Foundation for Good Programming Technique Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
(3 Ratings)
5 star 33.3%
4 star 33.3%
3 star 33.3%
2 star 0%
1 star 0%
skeptic Nov 06, 2017
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Great book on a very important topic.Python is complex language with even more complex environment and its module system is the critical part of it. For example Python standard library is structured as a collection of modules. The author gives you an excellent overview of Python module system, gives important recommendation about creation of your own modules (and provide several examples, including generator example in chapter 4, as well as warns about gotchas. Interplay between modules and namespaces covered in Chapter 7 is alone worth several times of the price of the book. for example few understand that the import statement adds the imported module or package to the current namespace, which may or may not be the global namespace. the author also covers the problem of "name masking" in this chapter.Ability to write a large script using your own modules is a very important skill that few books teach. usually intro books on Python try to throw everything that language contains into the sink, creating problems for whose who study the language, even in cases when they already knew some other programming languages such as C++ or Perl. Ability not to cover some features of the language usually are complete absent in authors of such books.Most of the authors of Python books talks a lot about how great Python is, but never explain why. this books explains probably the most important feature of this scripting language which makes is great (actually inhered from Modula 3). Also most intro books suffer from excessive fascination with OO (thanks God this fad is past its peak). This book does not.Publishing of books that are devoted to important topics has great value as:you have nowhere to go to get information that it provides. But it is very risky business. Of cause if you are diligent you can collect this information by reading a dozen of book by extracting and organizing into some presentation relevant parts. But this is the work better reserved for personalities which corresponds to famous Sherlock Holms and it presuppose that you have pretty of time to do it. Usually meeting both of those two conditions is pretty unrealistic.So it takes a certain about of courage to write a book devoted to a single specific feature of Python and the author should be commended for that.That's why I highly recommend this book for anybody who is trying to learn the language. It really allow you to understand a single the most critical feature of the Python language.The book contain 9 chapters. Here are the titles of those chapters:1. Introducing Modular Programming2. Writing Your First Modular Program3. Using Modules and Packages4. Using Modules for Real-World Programming5. Working with Module Patterns6. Creating Reusable Modules7. Advanced Module Techniques8. Testing and Deploying Modules9. Modular Programming as a Foundation for Good Programming TechniqueNOTE: In chapter 8 the author covers unrelated but an important topic about how to prepare your modules to publication and upload them to GitHub. Using GitHub became now very popular among Python programmers and the earlier you learn about this possibility the better.Chapter 8 also covers important topic about installation of Python packages. But unfortunately the coverage is way to brief and does not cover gotchas that you might experience installing such packages as Numpy.I would like to stress it again: currently the book has no competition in the level of coverage of this, probably the most important feature of Python language.
Amazon Verified review Amazon
Mike Driscoll Jun 17, 2016
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Earlier this year or late 2015, Packt Publishing asked me to be technical reviewer for a book called “Modular Programming with Python” by Erik Westra. It sounded really interesting and it ended up being one of the best books I’ve read from Packt. Note that I am the sole technical reviewer of the book.Modular Programming with Python is actually quite fun to read. It is designed to help you learn how to make your code more modular and gives some really good examples. The first chapter begins by going over the way Python itself organizes its modules and packages. It goes on to explain why modular programming can be important and it has a neat example of creating your very own module, which happens to be a caching module.The second chapter is all about creating your first modular program. It takes you through the steps you might go through to design a program in a modular fashion and then actually implements it. During the design phase, the author just stubs out the interface. Then in the implementation phase we get to actually add the code.For chapter three, we learn how modules and packages are initialized. The author also goes over Python’s importing system. We learn how imports work, what relative imports are, controlling what gets imported, circular imports and more.Chapter four is about creating a modular charting package. We learn how to chart using the pillow package, which is a fork of the Python Imaging Library (PIL). Then the author talks about how requirements for a projects change and how we must respond to them. In this example, we need a way to do vector images which pillow doesn’t support. So the author shows how to add the ability to create charts using Reportlab or pillow. This is also a really great chapter.Chapter five looks at modular patterns, like encapsulation, wrappers, etc. I think the part I found most interesting was the portion of the chapter that covered dynamic imports, plugins and hooks.In Chapter six, we learn about reusable modules. The author first describes what a reusable module is and then gives some examples. The rest of the chapter is devoted to creating a reusable module which happens to be a unit conversion module.Chapter seven digs even more into Python’s importing system. It covers such items as optional imports, local imports, adding packages to sys.path, various import “gotchas”, dealing with globals and more. This was actually one of my favorite chapters.For chapter eight, we get a change of pace. It’s all about testing our modules and deploying them. The chapter only gives the basics on unit tests, code coverage and test driven development. The bulk of the chapter is about getting a module ready for publication to Github or the Python Package Index.The final chapter is supposed to demonstrate how modular programming techniques can make the process of programming itself more effective. It gives a pretty short example and wraps up the book.Overall I found this book conveyed its message very well. The code examples are straight-forward and easy to understand. The writing is very good. Much better than what I normally see in Packt publications. I love reading neat or just interesting code and this book has several great examples. I did feel like the book ended a bit abruptly. While I don’t know what should have been added, I just felt like it could have had another chapter or two. Regardless, I do recommend this book to anyone who is having trouble organizing their code.
Amazon Verified review Amazon
CynA Dec 26, 2016
Full star icon Full star icon Full star icon Empty star icon Empty star icon 3
This is a great book for understanding how to organize your python applications.The only thing I didn't like was. The author was hell bent on not using classes at all.Like there was an example where using class would have made the examples easier but the author used all functions with globals and locals. It was weird.While I understand that the author probably did that so it would be easier for beginners?But then again when your buying a book about how to program organize your code modularly.Chances are you already know what a class is.I just seriously don't understand the forced avoidance with classes in the examples.Other than that the book is great
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela