Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Python Cookbook

You're reading from   Modern Python Cookbook 130+ updated recipes for modern Python 3.12 with new techniques and tools

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835466384
Length 818 pages
Edition 3rd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steven F. Lott Steven F. Lott
Author Profile Icon Steven F. Lott
Steven F. Lott
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Chapter 1 Numbers, Strings, and Tuples FREE CHAPTER 2. Chapter 2 Statements and Syntax 3. Chapter 3 Function Definitions 4. Chapter 4 Built-In Data Structures Part 1: Lists and Sets 5. Chapter 5 Built-In Data Structures Part 2: Dictionaries 6. Chapter 6 User Inputs and Outputs 7. Chapter 7 Basics of Classes and Objects 8. Chapter 8 More Advanced Class Design 9. Chapter 9 Functional Programming Features 10. Chapter 10 Working with Type Matching and Annotations 11. Chapter 11 Input/Output, Physical Format, and Logical Layout 12. Chapter 12 Graphics and Visualization with Jupyter Lab 13. Chapter 13 Application Integration: Configuration 14. Chapter 14 Application Integration: Combination 15. Chapter 15 Testing 16. Chapter 16 Dependencies and Virtual Environments 17. Chapter 17 Documentation and Style 18. Other Books You May Enjoy
19. Index

11.4 Using dataclasses to simplify working with CSV files

One commonly used data format is known as Comma-Separated Values (CSV). Python’s csv module has a very handy DictReader class definition. When a file contains a one-row header, the header row’s values become keys that are used for all the subsequent rows. This allows a great deal of flexibility in the logical layout of the data. For example, the column ordering doesn’t matter, since each column’s data is identified by a name taken from the header row.

Using a dictionary forces us to write, for example, row[’lat’] or row[’date’] to refer to data in specific columns. The built-in dict class has no provision for derived data. If we switch to a dataclass, we have a number of benefits:

  • Nicer attribute syntax like row.lat or row.date.

  • Derived values can be lazy properties.

  • A frozen dataclass is immutable, and the objects can...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime