Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Embedded Linux Programming

You're reading from   Mastering Embedded Linux Programming Unleash the full potential of Embedded Linux with Linux 4.9 and Yocto Project 2.2 (Morty) Updates

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher Packt
ISBN-13 9781787283282
Length 478 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Mr. Chris Simmonds Mr. Chris Simmonds
Author Profile Icon Mr. Chris Simmonds
Mr. Chris Simmonds
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Starting Out FREE CHAPTER 2. Learning About Toolchains 3. All About Bootloaders 4. Configuring and Building the Kernel 5. Building a Root Filesystem 6. Selecting a Build System 7. Creating a Storage Strategy 8. Updating Software in the Field 9. Interfacing with Device Drivers 10. Starting Up – The init Program 11. Managing Power 12. Learning About Processes and Threads 13. Managing Memory 14. Debugging with GDB 15. Profiling and Tracing 16. Real-Time Programming

Virtual memory basics

To recap, Linux configures the memory management unit (MMU) of the CPU to present a virtual address space to a running program that begins at zero and ends at the highest address, 0xffffffff, on a 32-bit processor. This address space is divided into pages of 4 KiB (there are rare examples of systems using other page sizes).

Linux divides this virtual address space into an area for applications, called user space, and an area for the kernel, called kernel space. The split between the two is set by a kernel configuration parameter named PAGE_OFFSET. In a typical 32-bit embedded system, PAGE_OFFSET is 0xc0000000, giving the lower 3 gigabytes to user space and the top gigabyte to kernel space. The user address space is allocated per process so that each process runs in a sandbox, separated from the others. The kernel address space is the same for all processes...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime