Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Clojure

You're reading from   Mastering Clojure Understand the philosophy of the Clojure language and dive into its inner workings to unlock its advanced features, methodologies, and constructs

Arrow left icon
Product type Paperback
Published in Mar 2016
Publisher Packt
ISBN-13 9781785889745
Length 266 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Akhil Wali Akhil Wali
Author Profile Icon Akhil Wali
Akhil Wali
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Working with Sequences and Patterns FREE CHAPTER 2. Orchestrating Concurrency and Parallelism 3. Parallelization Using Reducers 4. Metaprogramming with Macros 5. Composing Transducers 6. Exploring Category Theory 7. Programming with Logic 8. Leveraging Asynchronous Tasks 9. Reactive Programming 10. Testing Your Code 11. Troubleshooting and Best Practices A. References
Index

Chapter 2. Orchestrating Concurrency and Parallelism

Let's now examine how concurrent and parallel programming are supported in Clojure. The term concurrent programming refers to managing more than one task at the same time. Parallel programming or parallelism, on the other hand, deals with executing multiple tasks at the same time. The distinction between these two terms is that concurrency is about how we structure and synchronize multiple tasks, and parallelism is more about running multiple tasks in parallel over multiple cores. The main advantages of using concurrency and parallelism can be elaborated as follows:

  • Concurrent programs can perform multiple tasks simultaneously. For example, a desktop application can have a single task for handling user interaction and another task for handling I/O and network communication. A single processor can be shared among several tasks. Processor utilization is thus more effective in concurrent programs.
  • Parallel programs take advantage...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image