Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning with R

You're reading from   Machine Learning with R Learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data

Arrow left icon
Product type Paperback
Published in May 2023
Publisher Packt
ISBN-13 9781801071321
Length 762 pages
Edition 4th Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Brett Lantz Brett Lantz
Author Profile Icon Brett Lantz
Brett Lantz
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Introducing Machine Learning 2. Managing and Understanding Data FREE CHAPTER 3. Lazy Learning – Classification Using Nearest Neighbors 4. Probabilistic Learning – Classification Using Naive Bayes 5. Divide and Conquer – Classification Using Decision Trees and Rules 6. Forecasting Numeric Data – Regression Methods 7. Black-Box Methods – Neural Networks and Support Vector Machines 8. Finding Patterns – Market Basket Analysis Using Association Rules 9. Finding Groups of Data – Clustering with k-means 10. Evaluating Model Performance 11. Being Successful with Machine Learning 12. Advanced Data Preparation 13. Challenging Data – Too Much, Too Little, Too Complex 14. Building Better Learners 15. Making Use of Big Data 16. Other Books You May Enjoy
17. Index

What makes a successful machine learning model?

Until now, we have taken a largely quantitative perspective of what it means to be a successful machine learning model. Supervised learners were initially said to perform well if the accuracy was high.

In Chapter 10, Evaluating Model Performance, we expanded this definition to include other, more sophisticated performance measures, such as the Matthews correlation coefficient and the area under the ROC curve, to account for the fact that accuracy is misleading for unbalanced datasets and to consider performance trade-offs for potential use cases.

So far, we have relegated qualitative measures of model performance to the realm of unsupervised learning, although there are certainly non-quantifiable considerations in the area of predictive modeling as well. Consider, for example, a credit scoring model that is so computationally expensive that it cannot be implemented in a real-time application, or so algorithmically complex that...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime