Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for the Web

You're reading from   Machine Learning for the Web Gaining insight and intelligence from the internet with Python

Arrow left icon
Product type Paperback
Published in Jul 2016
Publisher Packt
ISBN-13 9781785886607
Length 298 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Andrea Isoni Andrea Isoni
Author Profile Icon Andrea Isoni
Andrea Isoni
Steve Essinger Steve Essinger
Author Profile Icon Steve Essinger
Steve Essinger
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Introduction to Practical Machine Learning Using Python FREE CHAPTER 2. Unsupervised Machine Learning 3. Supervised Machine Learning 4. Web Mining Techniques 5. Recommendation Systems 6. Getting Started with Django 7. Movie Recommendation System Web Application 8. Sentiment Analyser Application for Movie Reviews Index

Collaborative Filtering methods


This class of methods is based on the idea that any user will like items appreciated by other users similar to them. In simple terms, the fundamental hypothesis is that a user A, who is similar to user B, will likely rate an item as B did rather than in another way. In practice, this concept is implemented by either comparing the taste of different user's and inferring the future rating for a given user using the most similar users taste (memory-based) or by extracting some rating patterns from what the users like (model-based) and trying to predict the future rating following these patterns. All these methods require a large amount of data to work because the recommendations to a given user rely on how many similar users can be found in the data. This problem is called cold start and it is very well studied in literature, which usually suggests using some hybrid method between CF and CBF to overcome the issue. In our MovieLens database example we assume we...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image