Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Robotics using Python

You're reading from   Learning Robotics using Python Bring robotics projects to life with Python! Discover how to harness everything from Blender to ROS and OpenCV with one of our most popular robotics books.

Arrow left icon
Product type Paperback
Published in May 2015
Publisher Packt
ISBN-13 9781783287536
Length 330 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Robotics FREE CHAPTER 2. Mechanical Design of a Service Robot 3. Working with Robot Simulation Using ROS and Gazebo 4. Designing ChefBot Hardware 5. Working with Robotic Actuators and Wheel Encoders 6. Working with Robotic Sensors 7. Programming Vision Sensors Using Python and ROS 8. Working with Speech Recognition and Synthesis Using Python and ROS 9. Applying Artificial Intelligence to ChefBot Using Python 10. Integration of ChefBot Hardware and Interfacing it into ROS, Using Python 11. Designing a GUI for a Robot Using Qt and Python 12. The Calibration and Testing of ChefBot Index

Wheel odometry calibration

Calibration is required in odometry to reduce navigational errors. The main parameter needed to calibrate this is the measure of Distance per encoder ticks of the wheels. It is the distance traversed by the robot wheel after during each encoder tick.

The wheel base is the distance between the two differential drive wheels. Distance per encoder ticks is the distance traversed by the wheel on each encoder count. We can calibrate the robot by monitoring encoder counts of each wheel by driving for a fixed distance. The average of these counts is divided by the total distance traveled to get a starting value for the encoder click, which happens per millimeter. The encoder manufacturer may mention an encoder count in one revolution, but in a practical scenario, there will be changes in it.

To calibrate the robot, drive the robot for a fixed distance and note down the encoder counts in the left and right motor. The following equation can give an average count per millimeter...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image