Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning Jupyter 5

You're reading from   Learning Jupyter 5 Explore interactive computing using Python, Java, JavaScript, R, Julia, and JupyterLab

Arrow left icon
Product type Paperback
Published in Aug 2018
Publisher
ISBN-13 9781789137408
Length 282 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dan Toomey Dan Toomey
Author Profile Icon Dan Toomey
Dan Toomey
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to Jupyter FREE CHAPTER 2. Jupyter Python Scripting 3. Jupyter R Scripting 4. Jupyter Julia Scripting 5. Jupyter Java Coding 6. Jupyter JavaScript Coding 7. Jupyter Scala 8. Jupyter and Big Data 9. Interactive Widgets 10. Sharing and Converting Jupyter Notebooks 11. Multiuser Jupyter Notebooks 12. What's Next? 13. Other Books You May Enjoy

Python data access in Jupyter

Now that we have seen how Python works in Jupyter, including the underlying encoding, how does Python access a large dataset of work in Jupyter?

I started another view for pandas, using Python data access as the name. From here, we will read in a large dataset and compute some standard statistics on the data. We are interested in seeing how we use pandas in Jupyter, how well the script performs, and what information is stored in the metadata (especially if it is a larger dataset).

Our script accesses the iris dataset that is built-in to one of the Python packages. All we are looking to do is read in a slightly large number of items and calculate some basic operations on the dataset. We are really interested to see how much of the data is cached in the .pynb file.

The Python code is as follows: 

# import the datasets package 
from sklearn import...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image