Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Introduction to R for Business Intelligence

You're reading from   Introduction to R for Business Intelligence Profit optimization using data mining, data analysis, and Business Intelligence

Arrow left icon
Product type Paperback
Published in Aug 2016
Publisher Packt
ISBN-13 9781785280252
Length 228 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Jay Gendron Jay Gendron
Author Profile Icon Jay Gendron
Jay Gendron
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Extract, Transform, and Load 2. Data Cleaning FREE CHAPTER 3. Exploratory Data Analysis 4. Linear Regression for Business 5. Data Mining with Cluster Analysis 6. Time Series Analysis 7. Visualizing the Datas Story 8. Web Dashboards with Shiny A. References
B. Other Helpful R Functions C. R Packages Used in the Book
D. R Code for Supporting Market Segment Business Case Calculations

Building ARIMA time series models


The term ARIMA is made up of the letters that represent a modeling approach for time series data. ARIMA models contain the following three elements:

  • AR: Auto regressive, specified with p or P

  • I: Integrated (differencing), specified with d or D

  • MA: Moving average, specified with q or Q

Auto regressive means that earlier lagged points in the data influence later points in the sequence. This creates a dependence condition. The type of AR model chosen is based on how many steps away (lags) the points in the past affect the points in the future. Data that has a greater lingering effect on future points has a higher lag. The higher the lag, the higher the AR number. You will see models referred to as AR(1), AR(2), and so forth to represent an autoregressive model of the number of p lags specified in the parentheses.

Integrated refers to differencing that you learned earlier. The d value represents the number of differences used in the model. It is typically...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image