So, why are 3D worlds so important, or are at least believed to be so? Well, it all has to come down to state interpretation, or what we in DRL like to call state representation. A lot of work is being done on better representation of state for RL and other problems. The theory is that being able to represent just key or converged points of state allow us to simplify the problem dramatically. We have looked at doing just that using various techniques over several chapters. Recall how we discretized the state representation of a continuous observation space into a discrete space using a grid mesh. This technique is how we solved more difficult continuous space problems with the tools we had at the time. Over the course of several chapters since then, we saw how we could input that continuous space directly into our deep learning network. That included the...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine