The main goal of dimension reduction methods is to make the dimension of the transformed representation correspond with the internal dimension of the data. In other words, it should be similar to the minimum number of variables necessary to express all the possible properties of the data. Reducing the dimension helps mitigate the impact of the curse of dimensionality and other undesirable properties that occur in high-dimensional spaces. As a result, reducing dimensionality can effectively solve problems regarding classification, visualization, and compressing high-dimensional data. It makes sense to apply dimensionality reduction only when particular data is redundant; otherwise, we can lose important information. In other words, if we are able to solve the problem using data of smaller dimensions with the same level of efficiency and...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine