Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Getting Started with Python

You're reading from   Getting Started with Python Understand key data structures and use Python in object-oriented programming

Arrow left icon
Product type Course
Published in Feb 2019
Publisher Packt
ISBN-13 9781838551919
Length 722 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (3):
Arrow left icon
Benjamin Baka Benjamin Baka
Author Profile Icon Benjamin Baka
Benjamin Baka
Fabrizio Romano Fabrizio Romano
Author Profile Icon Fabrizio Romano
Fabrizio Romano
Dusty Phillips Dusty Phillips
Author Profile Icon Dusty Phillips
Dusty Phillips
Arrow right icon
View More author details
Toc

Table of Contents (31) Chapters Close

Title Page
Copyright and Credits
About Packt
Contributors
Preface
1. A Gentle Introduction to Python FREE CHAPTER 2. Built-in Data Types 3. Iterating and Making Decisions 4. Functions, the Building Blocks of Code 5. Files and Data Persistence 6. Principles of Algorithm Design 7. Lists and Pointer Structures 8. Stacks and Queues 9. Trees 10. Hashing and Symbol Tables 11. Graphs and Other Algorithms 12. Searching 13. Sorting 14. Selection Algorithms 15. Object-Oriented Design 16. Objects in Python 17. When Objects Are Alike 18. Expecting the Unexpected 19. When to Use Object-Oriented Programming 20. Python Object-Oriented Shortcuts 21. The Iterator Pattern 22. Python Design Patterns I 23. Python Design Patterns II 24. Testing Object-Oriented Programs 1. Other Books You May Enjoy Index

What are the drawbacks?


Probably, the only drawback that one could find in Python, which is not due to personal preferences, is its execution speed. Typically, Python is slower than its compiled brothers. The standard implementation of Python produces, when you run an application, a compiled version of the source code called byte code (with the extension .pyc), which is then run by the Python interpreter. The advantage of this approach is portability, which we pay for with a slowdown due to the fact that Python is not compiled down to machine level as are other languages.

However, Python speed is rarely a problem today, hence its wide use regardless of this suboptimal feature. What happens is that, in real life, hardware cost is no longer a problem, and usually it's easy enough to gain speed by parallelizing tasks. Moreover, many programs spend a great proportion of the time waiting for IO operations to complete; therefore, the raw execution speed is often a secondary factor to the overall performance. When it comes to number crunching though, one can switch to faster Python implementations, such as PyPy, which provides an average five-fold speedup by implementing advanced compilation techniques (check http://pypy.org/ for reference).

When doing data science, you'll most likely find that the libraries that you use with Python, such as Pandas and NumPy, achieve native speed due to the way they are implemented.

If that wasn't a good-enough argument, you can always consider that Python has been used to drive the backend of services such as Spotify and Instagram, where performance is a concern. Nonetheless, Python has done its job perfectly adequately.

You have been reading a chapter from
Getting Started with Python
Published in: Feb 2019
Publisher: Packt
ISBN-13: 9781838551919
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image