Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Getting Started with DuckDB

You're reading from   Getting Started with DuckDB A practical guide for accelerating your data science, data analytics, and data engineering workflows

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781803241005
Length 382 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ned Letcher Ned Letcher
Author Profile Icon Ned Letcher
Ned Letcher
Simon Aubury Simon Aubury
Author Profile Icon Simon Aubury
Simon Aubury
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Chapter 1: An Introduction to DuckDB FREE CHAPTER 2. Chapter 2: Loading Data into DuckDB 3. Chapter 3: Data Manipulation with DuckDB 4. Chapter 4: DuckDB Operations and Performance 5. Chapter 5: DuckDB Extensions 6. Chapter 6: Semi-Structured Data Manipulation 7. Chapter 7: Setting up the DuckDB Python Client 8. Chapter 8: Exploring DuckDB’s Python API 9. Chapter 9: Exploring DuckDB’s R API 10. Chapter 10: Using DuckDB Effectively 11. Chapter 11: Hands-On Exploratory Data Analysis with DuckDB 12. Chapter 12: DuckDB – The Wider Pond 13. Index 14. Other Books You May Enjoy

Querying DuckDB with dplyr

The dplyr package is highly regarded among data practitioners who use R for performing data analysis and modeling. It provides users with a set of key verbs for manipulating data, such as select, filter, arrange, summarize, and mutate. By enabling users to combine these verbs through a composable grammar of data manipulation, the dplyr API provides an elegant and intuitive interface for constructing analytical queries programmatically.

dplyr can be used to query a range of data backends, including R dataframes, Apache Arrow tables, Apache Spark datasets, and a variety of popular SQL databases. The dataframe backend is the most frequently used, allowing users to query R dataframes and tibbles using the dplyr interface. The dbplyr package provides an alternative backend that enables dplyr to be used as a query interface for a range of SQL-based databases. It works behind the scenes by translating dplyr operations into the SQL dialect of the database you...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image